Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.
The word “polymer” was introduced by the Swedish chemist J. J. Berzelius. He considered, for example, benzene (C6H6) to be a polymer of ethyne (C2H2). Later, this definition underwent a subtle modification.
The history of human use of polymers has been long since the mid-19th century, when it entered the chemical modification of natural polymers. In 1839, Charles Goodyear found a critical advance in the research of rubber vulcanization, which has turned natural rubber into a practical engineering material. In 1870, J. W. Hyatt uses camphor to plasticize nitrocellulose to make nitrocellulose plastics industrial. 1907 L. Baekeland reported the synthesis of the first thermosetting phenolic resin, which was industrialized in the 1920s, the first synthetic plastic product. In 1920, H. Standinger proposed that polymers are long-chain molecules that are connected by structural units through common covalent bonds. This conclusion laid the foundation for the establishment of modern polymer science. Subsequently, Carothers divided the synthetic polymers into two broad categories, namely a polycondensate obtained by a polycondensation reaction and an addition polymer obtained by a polyaddition reaction. In the 1950s, K. Ziegler and G. Natta discovered a coordination polymerization catalyst and pioneered the era of synthesis of stereoregular polymers. In the decades after the establishment of the concept of macromolecules, the synthesis of high polymers has achieved rapid development, and many important polymers have been industrialized one after another.
The basic division of polymers into thermoplastics, elastomers and thermosets helps define their areas of application.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students understand what life cycle engineering is and apply this methodology to adapt and improve the durability of polymer-based products. They understand how to recycle these materials and are able
The course presents the main classes of photopolymers and key factors which control photopolymerization. It explains how to select the right formulation and optimize processes for a given application.
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers (such as proteins). In polymer chemistry "cross-linking" usually refers to the use of cross-links to promote a change in the polymers' physical properties. When "crosslinking" is used in the biological field, it refers to the use of a probe to link proteins together to check for protein–protein interactions, as well as other creative cross-linking methodologies.
Mechanochemistry harnesses mechanical force to facilitate chemical reactions. Traditionally, the field of polymer mechanochemistry has used methods to activate chemical bonds, which use forces that are larger than those that are required to break a covalen ...
The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science, offering a material solution that is not only superior in fire safety but is also environment friendly. Herein, a flame-retardan ...
Developing sustainable, recyclable, and biodegradable elastomers with the mechanical properties comparable to commercial polymers presents a formidable challenge. To this end, we synthesize a kind of mechanically robust elastomers cross -linked by acetoace ...