A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteristics shared by those elements (thus creating a conceptual model). As such, they are the essential basis of all valid deductive inferences (particularly in logic, mathematics and science), where the process of verification is necessary to determine whether a generalization holds true for any given situation.
Generalization can also be used to refer to the process of identifying the parts of a whole, as belonging to the whole. The parts, which might be unrelated when left on their own, may be brought together as a group, hence belonging to the whole by establishing a common relation between them.
However, the parts cannot be generalized into a whole—until a common relation is established among all parts. This does not mean that the parts are unrelated, only that no common relation has been established yet for the generalization.
The concept of generalization has broad application in many connected disciplines, and might sometimes have a more specific meaning in a specialized context (e.g. generalization in psychology, generalization in learning).
In general, given two related concepts A and B, A is a "generalization" of B (equiv., B is a special case of A) if and only if both of the following hold:
Every instance of concept B is also an instance of concept A.
There are instances of concept A which are not instances of concept B.
For example, the concept animal is a generalization of the concept bird, since every bird is an animal, but not all animals are birds (dogs, for instance). For more, see Specialisation (biology).
Semantic change
The connection of generalization to specialization (or particularization) is reflected in the contrasting words hypernym and hyponym.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
Related lectures (24)
Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true.
The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific method for additional detail.) It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.
Our work addresses the problem of placement of threads, or virtual cores, onto physical cores in a multicore NUMA system. Different placements result in varying degrees of contention for shared resources, so choosing the right placement can have a large ef ...
Our work addresses the problem of placement of threads, or virtual cores, onto physical cores in a multicore NUMA system. Different placements result in varying degrees of contention for shared resources, so choosing the right placement can have a large ef ...