La généralisation est un processus cognitif qui consiste à abstraire un ensemble de concepts ou d'objets en négligeant les détails de sorte qu'ils puissent être considérés de façon comparable. Si la généralisation s'effectue de façon discrète, elle s'accompagne d'une transition à un niveau où la granularité des éléments de la structure considérée est plus grande. À l'inverse, la spécialisation permet de se focaliser davantage sur certains objets ayant des caractéristiques communes. La généralisation cartographique est l'opération qui permet de réduire la quantité d'information figurée sur une carte lors de la réduction de l'échelle. Supposons en effet qu'une surface donnée d'une carte contienne n informations. Lorsqu'on réduit l'échelle d'un facteur 2, la surface correspondante sur la nouvelle carte est divisée par 4 : il devient matériellement impossible de faire figurer sur la nouvelle carte toutes les informations qui figuraient sur la carte à grande échelle. La généralisation est le processus de sélection des informations conservées ; c'est une opération complexe, qui dépend de la fonction de la carte (les informations secondaires peuvent être supprimées, les informations essentielles doivent être conservées). La généralisation peut combiner des techniques très diverses : sélection (exemple : parmi plusieurs objets, on conserve le plus important) symbolisation (exemple : le contour d'un objet peut être remplacé par un symbole) simplification (exemple : les contours d'une courbe peuvent être simplifiés par réduction du nombre de points...) déplacement (les objets dont la localisation est secondaire sont déplacés pour éviter le recouvrement avec des objets dont la position est une information essentielle...) En programmation objet, la généralisation est la factorisation dans une super-classe d'attributs et de méthodes de ses sous-classes. Les éléments généralisés sont alors réutilisables dans toutes les sous-classes de la super-classe. L'avantage est que le code source n'est plus dupliqué.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-251(c): Numerical analysis
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
Séances de cours associées (24)
Analyse numérique de la stabilité de l'ODE
Couvre l'analyse des méthodes numériques pour résoudre les équations différentielles ordinaires en mettant l'accent sur la stabilité.
Rotations : observations cinétiques et contraintes
Explore les observations empiriques, l'énergie cinétique et les contraintes dans les rotations, y compris la généralisation des forces et des rotations 3D.
Analyse numérique: Stabilité dans les ODE
Couvre l'analyse de stabilité des ODE à l'aide de méthodes numériques et discute des conditions de stabilité.
Afficher plus
Publications associées (2)
Concepts associés (2)
Raisonnement déductif
En logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Méthode scientifique
La méthode scientifique désigne l'ensemble des canons guidant ou devant guider le processus de production des connaissances scientifiques, qu'il s'agisse d'observations, d'expériences, de raisonnements, ou de calculs théoriques. Très souvent, le terme de « méthode » engage l'idée implicite de son unicité, tant auprès du grand public que de certains chercheurs, qui de surcroît la confondent parfois avec la seule méthode hypothético-déductive.