Electrical power system simulation involves power system modeling and network simulation in order to analyze electrical power systems using design/offline or real-time data. Power system simulation software's are a class of computer simulation programs that focus on the operation of electrical power systems. These types of computer programs are used in a wide range of planning and operational situations for electric power systems.
Applications of power system simulation include: long-term generation and transmission expansion planning, short-term operational simulations, and market analysis (e.g. price forecasting).
These programs typically make use of mathematical optimization techniques such linear programming, quadratic programming, and mixed integer programming.
Multiple elements of a power system can be modelled. A power-flow study calculates the loading on transmission lines and the power necessary to be generated at generating stations, given the required loads to be served. A short circuit study or fault analysis calculates the short-circuit current that would flow at various points of interest in the system under study, for short-circuits between phases or from energized wires to ground. A coordination study allows selection and setting of protective relays and fuses to rapidly clear a short-circuit fault while minimizing effects on the rest of the power system. Transient or dynamic stability studies show the effect of events such as sudden load changes, short-circuits, or accidental disconnection of load on the synchronization of the generators in the system. Harmonic or power quality studies show the effect of non-linear loads such as lighting on the waveform of the power system, and allow recommendations to be made to mitigate severe distortion. An optimal power-flow study establishes the best combination of generating plant output to meet a given load requirement, so as to minimize production cost while maintaining desired stability and reliability; such models may be updated in near-real-time to allow guidance to system operators on the lowest-cost way to achieve economic dispatch.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation. Power-flow or load-flow studies are important for planning future expansion of power systems as well as in determining the best operation of existing systems.
This course focuses on the dynamic behavior of a power system. It presents the basic definitions, concepts and models for angular stability analysis with reference to transient stability, steady state
Modern power distribution systems are experiencing a large-scale integration of Converter-Interfaced Distributed Energy Resources (CIDERs). Their presence complicates the analysis and mitigation of harmonics, whose creation and propagation may be amplified ...
This paper proposes a generic and unified model of the power flow (PF) problem for multiterminal hybrid AC/DC networks. The proposed model is an extension of the standard AC-PF. The DC network is treated as an AC one and, in addition to the Slack, PV and P ...
With the growing popularity of electric vehicles (EVs), maintaining power grid stability has become a significant challenge. To address this issue, EV charging control strategies have been developed to manage the switch between vehicle-to-grid (V2G) and gr ...