Knowledge modeling is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is expressed in some knowledge representation language or data structure that enables the knowledge to be interpreted by software and to be stored in a database or data exchange file.
Knowledge-based engineering or knowledge-aided design is a process of computer-aided usage of such knowledge models for the design of products, facilities or processes. The design of products or facilities then uses the knowledge model to guide the creation of the facility or product that need to be designed. In other words, it used knowledge about a kind of object to create a product model of an (imaginary) individual object. Similarly, the design of a particular process implies the creation of a process model, which design activity can be guided by the knowledge that is contained in a knowledge model about such a kind of process. The resulting process model, product model or facility model is typically also stored in a database.
Usually the knowledge representation language only allows to represent knowledge (about kinds of things), whereas another language or data structure is required to represent and store the information models about individual things. If the knowledge representation language enables to express both, then the knowledge model and the information model can be expressed in the same language (or data structure). An example of a language that enables the expression of knowledge as well as information about individual things is Gellish English.
The basis of a knowledge model of an assembly physical object is a decomposition structure that specifies the components of the assembly and possible the sub-components of the components.
For example, knowledge about a compressor system includes that a compressor system consists of a compressor, a lubrication system, etc.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
Knowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
Understanding epidemic propagation in large networks is an important but challenging task, especially since we usually lack information, and the information that we have is often counter-intuitive. An illustrative example is the dependence of the final siz ...
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...