Knowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.
Examples of knowledge representation formalisms include semantic nets, systems architecture, frames, rules, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, and classifiers.
The earliest work in computerized knowledge representation was focused on general problem-solvers such as the General Problem Solver (GPS) system developed by Allen Newell and Herbert A. Simon in 1959. These systems featured data structures for planning and decomposition. The system would begin with a goal. It would then decompose that goal into sub-goals and then set out to construct strategies that could accomplish each subgoal.
In these early days of AI, general search algorithms such as A* were also developed. However, the amorphous problem definitions for systems such as GPS meant that they worked only for very constrained toy domains (e.g. the "blocks world"). In order to tackle non-toy problems, AI researchers such as Ed Feigenbaum and Frederick Hayes-Roth realized that it was necessary to focus systems on more constrained problems.
These efforts led to the cognitive revolution in psychology and to the phase of AI focused on knowledge representation that resulted in expert systems in the 1970s and 80s, production systems, frame languages, etc.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the key concepts and algorithms from the areas of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed infor
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
Un système expert est un outil capable de reproduire les mécanismes cognitifs d'un expert, dans un domaine particulier. Il s'agit de l'une des voies tentant d'aboutir à l'intelligence artificielle. Plus précisément, un système expert est un logiciel capable de répondre à des questions, en effectuant un raisonnement à partir de faits et de règles connues. Il peut servir notamment comme outil d'aide à la décision. Le premier système expert a été Dendral. Il permettait d'identifier les constituants chimiques.
Le Web des données (linked data, en anglais) est une initiative du W3C visant à favoriser la publication de données structurées sur le Web, non pas sous la forme de silos de données isolés les uns des autres, mais en les reliant entre elles pour constituer un réseau global d'informations. Il s'appuie sur les standards du Web tels que HTTP et URI. Plutôt qu'utiliser ces standards uniquement pour faciliter la navigation par les êtres humains, le Web des données les étend pour partager l'information également entre machines.
Knowledge modeling is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is expressed in some knowledge representation language or data structure that enables the knowledge to be interpreted by software and to be stored in a database or data exchange file.
Explore la représentation des connaissances, les structures de données, la sémantique et les défis de la recherche de données sur le Web.
Couvre la création et l'encodage d'ontologies, la modélisation des énoncés RDF, la syntaxe et la classification.
Explore le concept de Knowledge Graphs et leur rôle dans l'intégration des données et la compréhension sémantique, montrant des exemples et des applications du monde réel.
Le traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Data exchange is the process of taking data structured under a source schema and transforming it into a target schema, so that the target data is an accurate representation of the source data. Data exchange allows data to be shared between different computer programs. It is similar to the related concept of data integration except that data is actually restructured (with possible loss of content) in data exchange. There may be no way to transform an instance given all of the constraints.
La gestion des connaissances (en anglais knowledge management) est une démarche managériale pluridisciplinaire qui regroupe l'ensemble des initiatives, des méthodes et des techniques permettant de percevoir, identifier, analyser, organiser, mémoriser, partager les connaissances des membres d'une organisation – les savoirs créés par l'entreprise elle-même (marketing, recherche et développement) ou acquis de l'extérieur (intelligence économique) – en vue d'atteindre un objectif fixé. Nous sommes submergés d'informations.
The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among t
The current industrial revolution is said to be driven by the digitization that exploits connected information across all aspects of manufacturing. Standards have been recognized as an important enabl
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a edges) has proved to be beneficial in an array of NLP tasks including inference, textual entailment, question