The Local Interstellar Cloud (LIC), also known as the Local Fluff, is an interstellar cloud roughly across, through which the Solar System is moving. This feature overlaps a region around the Sun referred to as the solar neighborhood. It is unknown whether the Sun is embedded in the Local Interstellar Cloud, or is in the region where the Local Interstellar Cloud is interacting with the neighboring G-Cloud. Like the G-Cloud and others, the LIC is part of the Very Local Interstellar Medium which begins where the heliosphere and interplanetary medium end, the furthest that probes have traveled.
The Solar System is located within a structure called the Local Bubble, a low-density region of the galactic interstellar medium. Within this region is the Local Interstellar Cloud (LIC), an area of slightly higher hydrogen density. It is estimated that the Solar System entered the LIC within the past 10,000 years.
It is uncertain whether the Sun is still inside of the LIC or has already entered a transition zone between the LIC and the G cloud.
A recent analysis estimates the Sun will completely exit the LIC in no more than 1,900 years.
The cloud has a temperature of about , about the same temperature as the surface of the Sun. However, its specific heat capacity is very low because it is not very dense, with . This is less dense than the average for the interstellar medium in the Milky Way (), though six times denser than the gas in the hot, low-density Local Bubble () which surrounds the local cloud. In comparison, Earth's atmosphere at the edge of space (i.e. 100 km above sea level) has around 1.2 molecules per cubic centimeter, dropping to around 50 million (5.0) at .
The cloud is flowing outwards from the Scorpius–Centaurus association, a stellar association that is a star-forming region, roughly perpendicular to the Sun's own direction, if assumed to be two dimensional.
In 2019, researchers found interstellar iron-60 (60Fe) in Antarctica, which they relate to the Local Interstellar Cloud.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
Cosmic dust - also called extraterrestrial dust, space dust, or star dust - is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement.
The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether". The interplanetary medium includes interplanetary dust, cosmic rays, and hot plasma from the solar wind.
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Explores the rotation of the Milky Way galaxy and the determination of Oort constants.
,
In the current JWST era, rest-frame UV spectra play a crucial role in enhancing our understanding of the interstellar medium (ISM) and stellar properties of the first galaxies in the epoch of reionization (z > 6). Here, we compare well-known and reliable o ...
Bristol2024
,
Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Gal ...
Les Ulis Cedex A2023
Context. Di ffuse interstellar bands (DIBs) are common interstellar absorption features in spectroscopic observations but their origins remain unclear. DIBs play an important role in the life cycle of the interstellar medium (ISM) and can also be used to t ...