Summary
A photoinitiator is a molecule that creates reactive species (free radicals, cations or anions) when exposed to radiation (UV or visible). Synthetic photoinitiators are key components in photopolymers (for example, photo-curable coatings, adhesives and dental restoratives). Some small molecules in the atmosphere can also act as photoinitiators by decomposing to give free radicals (in photochemical smog). For instance, nitrogen dioxide (NO2) is produced in large quantities by gasoline-burning internal combustion engines. NO2 in the troposphere gives smog its brown coloration and catalyzes production of toxic ground-level ozone (O3). Molecular oxygen (O2) also serves as a photoinitiator in the stratosphere, breaking down into atomic oxygen and combining with O2 in order to form the ozone in the ozone layer. Photoinitators can create reactive species by different pathways including photodissociation and electron transfer. As an example of dissociation, hydrogen peroxide can undergo homolytic cleavage, with the O-O bond cleaving to form two hydroxyl radicals. H2O2 → 2 ·OH Certain azo compounds (such as azobisisobutyronitrile), can also photolytically cleave, forming two alkyl radicals and nitrogen gas: RCH2-N=N-H2CR → 2 RCH2 + N2 These free radicals can now promote other reactions. Since molecular oxygen can abstract H atoms from certain radicals, the HOO· radical is easily created. This particular radical can further abstract H atoms, creating H2O2, or hydrogen peroxide; peroxides can further cleave photolytically into two hydroxyl radicals. More commonly, HOO can react with free oxygen atoms to yield a hydroxyl radical (·OH) and oxygen gas. In both cases, the ·OH radicals formed can serve to oxidize organic compounds in the atmosphere. H2O2 → 2 ·OH HOO· + O → O2 + ·OH OH + CH4 → ·CH3 + H2O Nitrogen dioxide can also be photolytically cleaved by photons of wavelength less than 400 nm producing atomic oxygen and nitric oxide. NO2 → NO + O Atomic oxygen is a highly reactive species, and can abstract a H atom from anything, including water.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-703: Science and technology of UV-induced polymerization
The course presents the main classes of photopolymers and key factors which control photopolymerization. It explains how to select the right formulation and optimize processes for a given application.