Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases (without nucleation). Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.
Spinodal decomposition is observed when mixtures of metals or polymers separate into two co-existing phases, each rich in one species and poor in the other. When the two phases emerge in approximately equal proportion (each occupying about the same volume or area), characteristic intertwined structures are formed that gradually coarsen (see animation). The dynamics of spinodal decomposition is commonly modeled using the Cahn–Hilliard equation.
Spinodal decomposition is fundamentally different from nucleation and growth. When there is a nucleation barrier to the formation of a second phase, time is taken by the system to overcome that barrier. As there is no barrier (by definition) to spinodal decomposition, some fluctuations (in the order parameter that characterizes the phase) start growing instantly. Furthermore, in spinodal decomposition, the two distinct phases start growing in any location uniformly throughout the volume, whereas a nucleated phase change begins at a discrete number of points.
Spinodal decomposition occurs when a homogenous phase becomes thermodynamically unstable. An unstable phase lies at a maximum in free energy. In contrast, nucleation and growth occur when a homogenous phase becomes metastable. That is, another biphasic system becomes lower in free energy, but the homogenous phase remains at a local minimum in free energy, and so is resistant to small fluctuations. J. Willard Gibbs described two criteria for a metastable phase: that it must remain stable against a small change over a large area.
In the early 1940s, Bradley reported the observation of sidebands around the Bragg peaks in the X-ray diffraction pattern of a Cu-Ni-Fe alloy that had been quenched and then annealed inside the miscibility gap.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas cannot be liquefied by pressure alone. At the critical point, defined by a critical temperature Tc and a critical pressure pc, phase boundaries vanish.
Ce cours est une introduction aux transformations de phases liquide-solide et solide-solide. Il aborde les aspects thermodynamiques et cristallographiques. Il traite principalement des matériaux métal
Science des matériaux de construction non métalliques les plus utilisés et plus particulièrement des matériaux cimentaires (béton). Composition chimique, fabrication et comportement sur la durée.
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Vector-chiral (VC) antiferromagnetism is a spiral-like ordering of spins which may allow ferroelectricity to occur due to loss of space inversion symmetry. In this Letter we report direct experimental observation of ferroelectricity in the VC phase of beta ...
Fe(Sex)Te(1-)x compounds display a rich phase diagram, ranging from the nematicity of FeSe to the (pi, pi) magnetism of FeTe. We focus on FeSe0.4Te0.6, and exploit tr-ARPES to study its ultrafast electron dynamics following photoexcitation by near-infrared ...
ELSEVIER2021
,
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-ne ...