Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Fe(Sex)Te(1-)x compounds display a rich phase diagram, ranging from the nematicity of FeSe to the (pi, pi) magnetism of FeTe. We focus on FeSe0.4Te0.6, and exploit tr-ARPES to study its ultrafast electron dynamics following photoexcitation by near-infrared pump pulses. By exploiting probe-polarization-dependent matrix element effects, we reveal a photoinduced long-lived state, lasting for a few tens of picoseconds, showing features compatible with a nematic state. The possibility to induce a long-lived state in this compound by using ultra-short pulses might shed a new light on the driving force behind the nematic symmetry breaking in iron-based superconductors. With the aid of a phenomenological model, we illustrate how our results possibly question the common belief that a low-energy coupling with fluctuations is a necessary condition to stabilize the nematic order. On the contrary, the tendency towards orbital differentiation due to strong electronic correlations induced by the Hund's coupling could be at the origin of the nematic order in iron-based superconductors.
Henrik Moodysson Rønnow, Ivica Zivkovic, Richard Gaal, Youngro Lee