Summary
In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac). Such an interacting system is generally denoted , where the solid line denotes a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond. The most frequent donor and acceptor atoms are the period 2 elements nitrogen (N), oxygen (O), and fluorine (F). Hydrogen bonds can be intermolecular (occurring between separate molecules) or intramolecular (occurring among parts of the same molecule). The energy of a hydrogen bond depends on the geometry, the environment, and the nature of the specific donor and acceptor atoms and can vary between 1 and 40 kcal/mol. This makes them somewhat stronger than a van der Waals interaction, and weaker than fully covalent or ionic bonds. This type of bond can occur in inorganic molecules such as water and in organic molecules like DNA and proteins. Hydrogen bonds are responsible for holding materials such as paper and felted wool together, and for causing separate sheets of paper to stick together after becoming wet and subsequently drying. The hydrogen bond is responsible for many of the physical and chemical properties of compounds of N, O, and F that seem unusual compared with other similar structures. In particular, intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group-16 hydrides that have much weaker hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary and tertiary structures of proteins and nucleic acids. In a hydrogen bond, the electronegative atom not covalently attached to the hydrogen is named the proton acceptor, whereas the one covalently bound to the hydrogen is named the proton donor. This nomenclature is recommended by the IUPAC.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Show more
Related lectures (150)
Catalysis: Hydrogenation
Covers the topic of catalysis, focusing on the process of hydrogenation and the advantages of using soluble catalysts.
Energy Transition and Modeling
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Polymer Structure in Solution
Explores polymer structure in solution, covering bonding, forces, and properties.
Show more