Person# Michele Ceriotti

Biography

Michele Ceriotti received his Ph.D. in Physics from ETH Zürich in 2010. He spent three years in Oxford as a Junior Research Fellow at Merton College. Since 2013 he leads the laboratory for Computational Science and Modeling in the Institute of Materials at EPFL. His research revolves around the atomic-scale modelling of materials, based on the sampling of quantum and thermal fluctuations and on the use of machine learning to predict and rationalize structure-property relations. He has been awarded the IBM Research Forschungspreis in 2010, the Volker Heine Young Investigator Award in 2013, an ERC Starting Grant in 2016, and the IUPAP C10 Young Scientist Prize in 2018.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

People doing similar research (97)

Related research domains (80)

Machine learning

Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machin

Molecular dynamics

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giv

Quantum mechanics

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quan

Courses taught by this person (6)

CH-802: Summer School on Theoretical modelling nanoscale

This School will focus on theoretical training on subjects that play a fundamental role in nanoscale science, condensed matter physics, materials science, and bioengineering.

MSE-305: Introduction to atomic-scale modeling

This course provides an introduction to the modeling of matter at the atomic scale, using interactive jupyter notebooks to see several of the core concepts of materials science in action.

MSE-421: Statistical mechanics

This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical interpretation. Lectures and exercises will be complemented with hands-on simulation projects.

Related publications (186)

Loading

Loading

Loading

Related units (4)

Michele Ceriotti, Kevin Kazuki Huguenin-Dumittan

Machine learning frameworks based on correlations of interatomic positions begin with a discretized description of the density of other atoms in the neighborhood of each atom in the system. Symmetry considerations support the use of spherical harmonics to expand the angular dependence of this density, but there is, as of yet, no clear rationale to choose one radial basis over another. Here, we investigate the basis that results from the solution of the Laplacian eigenvalue problem within a sphere around the atom of interest. We show that this generates a basis of controllable smoothness within the sphere (in the same sense as plane waves provide a basis with controllable smoothness for a problem with periodic boundaries) and that a tensor product of Laplacian eigenstates also provides a smooth basis for expanding any higher-order correlation of the atomic density within the appropriate hypersphere. We consider several unsupervised metrics of the quality of a basis for a given dataset and show that the Laplacian eigenstate basis has a performance that is much better than some widely used basis sets and competitive with data-driven bases that numerically optimize each metric. Finally, we investigate the role of the basis in building models of the potential energy. In these tests, we find that a combination of the Laplacian eigenstate basis and target-oriented heuristics leads to equal or improved regression performance when compared to both heuristic and data-driven bases in the literature. We conclude that the smoothness of the basis functions is a key aspect of successful atomic density representations. (c) 2022 Author(s).

Michele Ceriotti, Edgar Albert Engel, Maria Pakhnova

Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fruitful approach involves classifying the different combinations of interacting chemical moieties, as understanding the relative energetics of different interactions enables the design of molecular crystals and fine-tuning of their stabilities. While this is usually performed based on the empirical observation of the most commonly encountered motifs in known crystal structures, we propose to apply a combination of supervised and unsupervised machine-learning techniques to automate the construction of an extensive library of molecular building blocks. We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it to a curated dataset of organic crystals, exploiting its atom-centered nature to obtain a data-driven assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then interpret this library using a low-dimensional representation of the structure-energy landscape and discuss selected examples of the insights into crystal engineering that can be extracted from this analysis, providing a complete database to guide the design of molecular materials.

Michele Ceriotti, Sandip De, Guillaume André Jean Fraux, Nataliya Lopanitsyna

Alloys composed of several elements in roughly equimolar composition, often referred to as high-entropy alloys, have long been of interest for their thermodynamics and peculiar mechanical properties, and more recently for their potential application in catalysis. They are a considerable challenge to traditional atomistic modeling, and also to data-driven potentials that for the most part have memory footprint, computational effort, and data requirements which scale poorly with the number of elements included. We apply a recently proposed scheme to compress chemical information in a lower-dimensional space, which reduces dramatically the cost of the model with negligible loss of accuracy, to build a potential that can describe 25 d-block transition metals. The model shows semiquantitative accuracy for prototypical alloys and is remarkably stable when extrapolating to structures outside its training set. We use this framework to study element segregation in a computational experiment that simulates an equimolar alloy of all 25 elements, mimicking the seminal experiments in the groups of Yeh and Cantor, and use our observations on the short-range order relations between the elements to define a data-driven set of Hume-Rothery rules that can serve as guidance for alloy design. We conclude with a study of three prototypical alloys, CoCrFeMnNi, CoCrFeMoNi, and IrPdPtRhRu, determining their stability and the short-range order behavior of their constituents.