Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, or pipes.
Hydraulic systems, like pneumatic systems, are based on Pascal's law which states that any pressure applied to a fluid inside a closed system will transmit that pressure equally everywhere and in all directions. A hydraulic system uses an incompressible liquid as its fluid, rather than a compressible gas.
The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, the high power density and a wide array of actuators that can make use of this power, and the huge multiplication of forces that can be achieved by applying pressures over relatively large areas. One drawback, compared to machines using gears and shafts, is that any transmission of power results in some losses due to resistance of fluid flow through the piping.
Joseph Bramah patented the hydraulic press in 1795. While working at Bramah's shop, Henry Maudslay suggested a cup leather packing. Because it produced superior results, the hydraulic press eventually displaced the steam hammer for metal forging.
To supply large-scale power that was impractical for individual steam engines, central station hydraulic systems were developed. Hydraulic power was used to operate cranes and other machinery in British ports and elsewhere in Europe. The largest hydraulic system was in London. Hydraulic power was used extensively in Bessemer steel production. Hydraulic power was also used for elevators, to operate canal locks and rotating sections of bridges. Some of these systems remained in use well into the twentieth century.
Harry Franklin Vickers was called the "Father of Industrial Hydraulics" by ASME.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matter.
A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery. Hydraulic systems like the ones mentioned above will work most efficiently if the hydraulic fluid used has zero compressibility.
Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics (using a liquid such as mineral oil or water) and pneumatics (using a gas such as compressed air or other gases). Although steam is also a fluid, steam power is usually classified separately from fluid power (implying hydraulics or pneumatics). Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.
Introduction, concepts de base; implosion d'une bulle de cavitation; dynamique des cavits attachées; cavitation dans les structures tourbillonnaires; applications industrielles.
Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement
Les aménagements hydrauliques sont indispensable pour garantir l'approvisionnement en énergie écophile et renouvelable, de même que l'approvisionnement en eau de bonne qualité et en quantité suffisant
This PhD thesis is framed within the XFLEX HYDRO project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No 857832. The ultimate objective of the XFLEX HYDRO project is to increase hydropower potential in ...
EPFL2024
,
Hydraulic short circuit (HSC), corresponding to the simultaneous operation of the pumps and turbines, enhances the power flexibility of a pumped storage power plant (PSPP). However, comprehensive analyses are imperative to guarantee a secure and reliable o ...
Elsevier Sci Ltd2024
, , , , ,
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particul ...