Molecular epidemiology is a branch of epidemiology and medical science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of disease within families and across populations. This field has emerged from the integration of molecular biology into traditional epidemiological research. Molecular epidemiology improves our understanding of the pathogenesis of disease by identifying specific pathways, molecules and genes that influence the risk of developing disease. More broadly, it seeks to establish understanding of how the interactions between genetic traits and environmental exposures result in disease.
The term "molecular epidemiology" was first coined by Edwin D. Kilbourne in a 1973 article entitled "The molecular epidemiology of influenza". The term became more formalized with the formulation of the first book on molecular epidemiology titled Molecular Epidemiology: Principles and Practice by Paul A. Schulte and Frederica Perera. At the heart of this book is the impact of advances in molecular research that have given rise to and enabled the measurement and exploitation of the biomarker as a vital tool to link traditional molecular and epidemiological research strategies to understand the underlying mechanisms of disease in populations.
While most molecular epidemiology studies are using conventional disease designation system for an outcome (with the use of exposures at the molecular level), compelling evidence indicates that disease evolution represents inherently heterogeneous process differing from person to person. Conceptually, each individual has a unique disease process different from any other individual ("the unique disease principle"), considering uniqueness of the exposome and its unique influence on molecular pathologic process in each individual. Studies to examine the relationship between an exposure and molecular pathologic signature of disease (particularly, cancer) became increasingly common throughout the 2000s.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular pathological epidemiology (MPE, also molecular pathologic epidemiology) is a discipline combining epidemiology and pathology. It is defined as "epidemiology of molecular pathology and heterogeneity of disease". Pathology and epidemiology share the same goal of elucidating etiology of disease, and MPE aims to achieve this goal at molecular, individual and population levels. Typically, MPE utilizes tissue pathology resources and data within existing epidemiology studies.
Molecular pathology is an emerging discipline within pathology which is focused in the study and diagnosis of disease through the examination of molecules within organs, tissues or bodily fluids. Molecular pathology shares some aspects of practice with both anatomic pathology and clinical pathology, molecular biology, biochemistry, proteomics and genetics, and is sometimes considered a "crossover" discipline. It is multi-disciplinary in nature and focuses mainly on the sub-microscopic aspects of disease.
Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way.
Epidemiology is foundational to medicine and public health. This course starts with the key principles of classical epidemiology, progressing through computational modeling techniques, and concluding
In this summer school, our main objective is to bring PhD and master students with a strong quantitative background closer to the challenges
of epidemiology and public health, and work with them on de
The severe social and economic burden of stroke is a strong motivation for the exploration of innovative medical approaches. In this context, magnetic resonance (MR) of hyperpolarized (HP) molecular agents via dissolution dynamic nuclear polarization (dDNP ...
Introduction: We have reanalyzed the genomic data of the International Collaboration for the Genomics of HIV (ICGH), centering on HIV-1 Elite Controllers.Methods: We performed a genome-wide Association Study comparing 543 HIV Elite Controllers with 3,272 u ...
Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported t ...