In astronomy, a semiregular variable star, a type of variable star, is a giant or supergiant of intermediate and late (cooler) spectral type showing considerable periodicity in its light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to more than 2000 days, while the shapes of the light curves may be rather different and variable with each cycle. The amplitudes may be from several hundredths to several magnitudes (usually 1-2 magnitudes in the V filter).
The semiregular variable stars have been sub-divided into four categories for many decades, with a fifth related group defined more recently. The original definitions of the four main groups were formalised in 1958 at the tenth general assembly of the International Astronomical Union (IAU). The General Catalogue of Variable Stars (GCVS) has updated the definitions with some additional information and provided newer reference stars where old examples such as S Vul have been re-classified.
The semiregular variable stars, particularly the SRa and SRb sub-classes, are often grouped with the Mira variables under the long-period variable heading. In other situations, the term is expanded to cover almost all cool pulsating stars. The semi-regular giant stars are closely related to the Mira variables: Mira stars generally pulsate in the fundamental mode; semiregular giants pulsate in one or more overtones.
Photometric studies in the Large Magellanic Cloud looking for gravitational microlensing events have shown that essentially all cool evolved stars are variable, with the coolest stars showing very large amplitudes and warmer stars showing only micro-variations. The semiregular variable stars fall on one of five main period-luminosity relationship sequences identified, differing from the Mira variables only in pulsating in an overtone mode. The closely related OSARG (OGLE small amplitude red giant) variables pulsate in an unknown mode.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K. The title supergiant, as applied to a star, does not have a single concrete definition. The term giant star was first coined by Hertzsprung when it became apparent that the majority of stars fell into two distinct regions of the Hertzsprung–Russell diagram.
Red supergiants (RSGs) are stars with a supergiant luminosity class (Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars. Stars are classified as supergiants on the basis of their spectral luminosity class.
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. At the end we will also discuss holomorphic functions in several
In this paper, we study high-resolution spectra of 19 stars that have metallicity estimates below -3.5 using at least two metallicity-sensitive photometric indices based on Pristine photometry. The purpose is to understand what kind of stars populate this ...
The globular cluster Messier 80 was monitored by the Kepler space telescope for 80 days during the K2 mission. Continuous, high-precision photometry of such an old, compact cluster allows us for studies of its variable star population in unprecedented deta ...
The presentation delves into the significance of the concept of the Environment in Architecture, examining whether the term could be construed as a constant or a variable. Supported by a series of examples from the Alpine context, it seeks to illuminate th ...