Summary
Human cloning is the creation of a genetically identical copy of a human. The term is generally used to refer to artificial human cloning, which is the reproduction of human cells and tissue. It does not refer to the natural conception and delivery of identical twins. The possibilities of human cloning have raised controversies. These ethical concerns have prompted several nations to pass laws regarding human cloning. Two commonly discussed types of human cloning are therapeutic cloning and reproductive cloning. Therapeutic cloning would involve cloning cells from a human for use in medicine and transplants. It is an active area of research, but is not in medical practice anywhere in the world, as of . Two common methods of therapeutic cloning that are being researched are somatic-cell nuclear transfer and (more recently) pluripotent stem cell induction. Reproductive cloning would involve making an entire cloned human, instead of just specific cells or tissues. Although the possibility of cloning humans had been the subject of speculation for much of the 20th century, scientists and policymakers began to take the prospect seriously in 1969. J. B. S. Haldane was the first to introduce the idea of human cloning, for which he used the terms "clone" and "cloning", which had been used in agriculture since the early 20th century. In his speech on "Biological Possibilities for the Human Species of the Next Ten Thousand Years" at the Ciba Foundation Symposium on Man and his Future in 1963, he said: It is extremely hopeful that some human cell lines can be grown on a medium of precisely known chemical composition. Perhaps the first step will be the production of a clone from a single fertilized egg, as in Brave New World... Assuming that cloning is possible, I expect that most clones would be made from people aged at least fifty, except for athletes and dancers, who would be cloned younger. They would be made from people who were held to have excelled in a socially acceptable accomplishment...
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CH-319: Experimental biochemistry and biophysics
A 7-week long (4+8 h) experiment where you plan and construct a fluorescent sensor protein starting from DNA bricks. The protein will be expressed in and purified from E.coli, characterized by bioche
BIOENG-519: Methods: omics in biomedical research
High-throughput methodologies broadly called Omics allow to characterize the complexity and dynamics of any biological system. This course will provide a general description of different methods relat
BIO-447: Stem cells and organoids
This course introduces the fundamentals of stem cell biology, with a particular focus on the role of stem cells during development, tissue homeostasis/regeneration and disease, and the generation of o
Show more
Related lectures (32)
Cloning Projects Analysis
Explores the use of ApE for planning and analyzing cloning projects.
Quantum Entanglement
Delves into quantum entanglement, exploring entangled particles' state, evolution, and measurement.
Quantum Key Distribution, Dense Coding, Teleportation
Covers QKD, Dense Coding, and Teleportation, explaining attacks, basis choices, and security tests.
Show more
Related publications (46)

ISSCR standards for the use of human stem cells in basic research

Matthias Lütolf

The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaning-ful, and durable, standards that ensure reproducibility and ...
Cambridge2023

Sperm-contributed centrioles segregate stochastically into blastomeres of 4-cell stage Caenorhabditis elegans embryos

Pierre Gönczy, Fernando Romero Balestra

Whereas both sperm and egg contribute nuclear genetic material to the zygote in metazoan organisms, the inheritance of other cellular constituents is unequal between the 2 gametes. Thus, 2 copies of the centriole are contributed solely by the sperm to the ...
GENETICS SOCIETY AMERICA2023

Microfluidic T Cell Selection by Cellular Avidity

Li Tang, Armand Kurum, Alexandre Harari

No T cell receptor (TCR) T cell therapies have obtained clinical approval. The lack of strategies capable of selecting and recovering potent T cell candidates may be a contributor to this. Existing protocols for selecting TCR T cell clones for cell therapi ...
WILEY2022
Show more
Related concepts (8)
Bioethics
Bioethics is both a field of study and professional practice, interested in ethical issues related to health (primarily focused on the human, but also increasingly includes animal ethics), including those emerging from advances in biology, medicine, and technologies. It proposes the discussion about moral discernment in society (what decisions are "good" or "bad" and why) and it is often related to medical policy and practice, but also to broader questions as environment, well-being and public health.
Medical ethics
Medical ethics is an applied branch of ethics which analyzes the practice of clinical medicine and related scientific research. Medical ethics is based on a set of values that professionals can refer to in the case of any confusion or conflict. These values include the respect for autonomy, non-maleficence, beneficence, and justice. Such tenets may allow doctors, care providers, and families to create a treatment plan and work towards the same common goal.
Cloning
Cloning is the process of producing individual organisms with identical genomes, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction; this reproduction of an organism by itself without a mate is known as parthenogenesis. In the field of biotechnology, cloning is the process of creating cloned organisms of cells and of DNA fragments. The artificial cloning of organisms, sometimes known as reproductive cloning, is often accomplished via somatic-cell nuclear transfer (SCNT), a cloning method in which a viable embryo is created from a somatic cell and an egg cell.
Show more