Summary
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz). Some of the unit's most common uses are in the description of periodic waveforms and musical tones, particularly those used in radio- and audio-related applications. It is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon, via the Planck relation E = hν, where E is the photon's energy, ν is its frequency, and h is the Planck constant. The hertz is equivalent to one cycle per second. The International Committee for Weights and Measures defined the second as "the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom" and then adds: "It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9192631770hertz, νhfs Cs = 9192631770Hz." The dimension of the unit hertz is 1/time (T−1). Expressed in base SI units, the unit is the reciprocal second (1/s). In English, "hertz" is also used as the plural form. As an SI unit, Hz can be prefixed; commonly used multiples are kHz (kilohertz, e3Hz), MHz (megahertz, e6Hz), GHz (gigahertz, e9Hz) and THz (terahertz, e12Hz). One hertz simply means "one event per second" (where the event being counted may be a complete cycle); 100Hz means "one hundred events per second", and so on. The unit may be applied to any periodic event—for example, a clock might be said to tick at 1Hz, or a human heart might be said to beat at 1.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.