In programming languages, a label is a sequence of characters that identifies a location within source code. In most languages, labels take the form of an identifier, often followed by a punctuation character (e.g., a colon). In many high-level languages, the purpose of a label is to act as the destination of a GOTO statement. In assembly language, labels can be used anywhere an address can (for example, as the operand of a JMP or MOV instruction). Also in Pascal and its derived variations. Some languages, such as Fortran and BASIC, support numeric labels. Labels are also used to identify an entry point into a compiled sequence of statements (e.g., during debugging).
In C a label identifies a statement in the code. A single statement can have multiple labels. Labels just indicate locations in the code and reaching a label has no effect on the actual execution.
goto
Function labels consist of an identifier, followed by a colon. Each such label points to a statement in a function and its identifier must be unique within that function. Other functions may use the same name for a label. Label identifiers occupy their own namespace – one can have variables and functions with the same name as a label.
void foo(int number)
{
if (number < 0)
goto error;
bar(number);
return;
error:
fprintf(stderr, "Invalid number!\n");
}
Here error is the label. The statement goto can be used to jump to a labeled statement in the code. After a goto, program execution continues with the statement after the label.
Switch statement
Two types of labels can be put in a switch statement. A case label consists of the keyword case, followed by an expression that evaluates to integer constant. A default label consists of the keyword default. Case labels are used to associate an integer value with a statement in the code. When a switch statement is reached, program execution continues with the statement after the case label with value that matches the value in the parentheses of the switch.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
Goto (goto, GOTO, GO TO, GoTo, or other case combinations, depending on the programming language) is a statement found in many computer programming languages. It performs a one-way transfer of control to another line of code; in contrast a function call normally returns control. The jumped-to locations are usually identified using labels, though some languages use line numbers. At the machine code level, a goto is a form of branch or jump statement, in some cases combined with a stack adjustment.
In computer programming languages, a switch statement is a type of selection control mechanism used to allow the value of a variable or expression to change the control flow of program execution via search and map. Switch statements function somewhat similarly to the if statement used in programming languages like C/C++, C#, Visual Basic .NET, Java and exists in most high-level imperative programming languages such as Pascal, Ada, C/C++, C#, Visual Basic .NET, Java, and in many other types of language, using such keywords as switch, case, select or inspect.
In computer programming and software development, debugging is the process of finding and resolving bugs (defects or problems that prevent correct operation) within computer programs, software, or systems. Debugging tactics can involve interactive debugging, control flow analysis, unit testing, integration testing, , monitoring at the application or system level, memory dumps, and profiling. Many programming languages and software development tools also offer programs to aid in debugging, known as debuggers.
Covers generating code for a compiler, translating an Amy program to WebAssembly, including memory management and pattern matching compilation.
Robustness of medical image classification models is limited by its exposure to the candidate disease classes. Generalized zero shot learning (GZSL) aims at correctly predicting seen and unseen classes and most current GZSL approaches have focused on the s ...
Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems, ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of ...