In enzymology, a nitrous oxide reductase also known as nitrogen:acceptor oxidoreductase (N2O-forming) is an enzyme that catalyzes the final step in bacterial denitrification, the reduction of nitrous oxide to dinitrogen. N2O + 2 reduced cytochome c N2 + H2O + 2 cytochrome c It plays a critical role in preventing release of a potent greenhouse gas into the atmosphere. N2O is an inorganic metabolite of the prokaryotic cell during denitrification. Thus, denitrifiers comprise the principal group of N2O producers, with roles played also by nitrifiers, methanotrophic bacteria, and fungi. Among them, only denitrifying prokaryotes have the ability to convert N2O to N2. Conversion of N2O into N2 is the last step of a complete nitrate denitrification process and is an autonomous form of respiration. N2O is generated in the denitrifying cell by the activity of respiratory NO reductase. Some microbial communities have only capability of N2O reduction to N2 and does not have the other denitrification pathways such communities are known as nitrous oxide reducers. Some denitrifiers do not have complete denitrification with end product N2O Nitrous-oxide reductase is a homodimer that is located in the bacterial periplasm. X-ray structures of the enzymes from Pseudomonas nautica and Paracoccus denitrificans have revealed that each subunit (MW=65 kDa) is organized into two domains. One cupredoxin-like domain contains a binuclear copper protein known as CuA. The second domain comprises a 7-bladed propeller of β-sheets that contains the catalytic site called CuZ, which is a tetranuclear copper-sulfide cluster. The distance between the CuA and CuZ centers within a single subunit is greater than 30Å, a distance that precludes physiologically relevant rates of intra-subunit electron transfer. However, the two subunits are orientated "head to tail" such that the CuA center in one subunit lies only 10 Å from the CuZ center in the second ensuring that pairs of redox centers in opposite subunits form the catalytically competent unit.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (7)
Organic Substances in Wastewater
Explores the analysis of organic substances, biochemical oxygen demand, bacterial biomass, nitrogen and phosphorus pollution, and the impact of phosphates on aquatic environments.
Nitrogen Cycle in Water: Denitrification and Precipitation Processes
Explores denitrification in water, phosphorus precipitation, and sewage sludge ash storage.
Sulfur and Nitrogen Cycles
Explores the environmental significance of sulfur and nitrogen cycles, including key microbial processes and organisms involved.
Show more
Related publications (25)

Palladium-based supramolecular assemblies: from complex structures to water-soluble anion-receptors

Sylvain Alexandre Marie Sudan

The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
EPFL2024

Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios

Natalia Jakus

Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
AMER SOC MICROBIOLOGY2023

Synthetic chemistry with nitrous oxide and triazenes

Iris Roswitha Landman

Nitrous oxide (N2O) has gained much interest because of its physiological effects ("laughing gas") and its negative environmental impact ("greenhouse gas", "ozone-depleting substance"): It has a lifetime of more than 100 years in the atmosphere. Its persis ...
EPFL2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.