In materials science, strain rate is the change in strain (deformation) of a material with respect to time.
The strain rate at some point within the material measures the rate at which the distances of adjacent parcels of the material change with time in the neighborhood of that point. It comprises both the rate at which the material is expanding or shrinking (expansion rate), and also the rate at which it is being deformed by progressive shearing without changing its volume (shear rate). It is zero if these distances do not change, as happens when all particles in some region are moving with the same velocity (same speed and direction) and/or rotating with the same angular velocity, as if that part of the medium were a rigid body.
The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity coefficient) and one relating to the shear rate (the "ordinary" viscosity coefficient). In solids, higher strain rates can often cause normally ductile materials to fail in a brittle manner.
The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.
In simple contexts, a single number may suffice to describe the strain, and therefore the strain rate. For example, when a long and uniform rubber band is gradually stretched by pulling at the ends, the strain can be defined as the ratio between the amount of stretching and the original length of the band:
where is the original length and its length at each time . Then the strain rate will be
where is the speed at which the ends are moving away from each other.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Application des principales catégories de procédés de production.Modèles physiques élémentaires décrivant le comportement des principaux procédés de production.Compréhension de base des aspects éc
This course aims to provide a concise understanding of how materials and structures react to loads. It covers the basics of stress and strain in multi dimensions, deformation and failure criteria. The
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the Jacobian matrix (derivative with respect to position) of the flow velocity. In fluid mechanics it also can be described as the velocity gradient, a measure of how the velocity of a fluid changes between different points within the fluid.
Shear stress (often denoted by τ (Greek: tau)) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. The formula to calculate average shear stress is force per unit area.: where: τ = the shear stress; F = the force applied; A = the cross-sectional area of material with area parallel to the applied force vector.
Sustainable development has emerged as a paramount consideration in various fields of industry, including construction, to preserve the environment and its finite resources. Lightweight structures, such as fiber-polymer composite structures, address both s ...
EPFL2023
We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow v ...
BackgroundImpaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia ...