In and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well-behaved type of morphism.
A normal category is a category in which every monomorphism is normal. A conormal category is one in which every epimorphism is conormal.
A monomorphism is normal if it is the of some morphism, and an epimorphism is conormal if it is the of some morphism.
A category C is binormal if it's both normal and conormal.
But note that some authors will use the word "normal" only to indicate that C is binormal.
In the , a monomorphism f from H to G is normal if and only if its image is a normal subgroup of G. In particular, if H is a subgroup of G, then the inclusion map i from H to G is a monomorphism, and will be normal if and only if H is a normal subgroup of G. In fact, this is the origin of the term "normal" for monomorphisms.
On the other hand, every epimorphism in the category of groups is conormal (since it is the cokernel of its own kernel), so this category is conormal.
In an , every monomorphism is the kernel of its cokernel, and every epimorphism is the cokernel of its kernel.
Thus, abelian categories are always binormal.
The category of abelian groups is the fundamental example of an abelian category, and accordingly every subgroup of an abelian group is a normal subgroup.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f. Cokernels are to the , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain).
In , a branch of mathematics, the image of a morphism is a generalization of the of a function. Given a and a morphism in , the image of is a monomorphism satisfying the following universal property: There exists a morphism such that . For any object with a morphism and a monomorphism such that , there exists a unique morphism such that . Remarks: such a factorization does not necessarily exist. is unique by definition of monic. therefore by monic. is monic. already implies that is unique.
In and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel of the morphism f : X → Y is the "most general" morphism k : K → X that yields zero when composed with (followed by) f. Note that kernel pairs and difference kernels (also known as binary equalisers) sometimes go by the name "kernel"; while related, these aren't quite the same thing and are not discussed in this article.