In and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well-behaved type of morphism.
A normal category is a category in which every monomorphism is normal. A conormal category is one in which every epimorphism is conormal.
A monomorphism is normal if it is the of some morphism, and an epimorphism is conormal if it is the of some morphism.
A category C is binormal if it's both normal and conormal.
But note that some authors will use the word "normal" only to indicate that C is binormal.
In the , a monomorphism f from H to G is normal if and only if its image is a normal subgroup of G. In particular, if H is a subgroup of G, then the inclusion map i from H to G is a monomorphism, and will be normal if and only if H is a normal subgroup of G. In fact, this is the origin of the term "normal" for monomorphisms.
On the other hand, every epimorphism in the category of groups is conormal (since it is the cokernel of its own kernel), so this category is conormal.
In an , every monomorphism is the kernel of its cokernel, and every epimorphism is the cokernel of its kernel.
Thus, abelian categories are always binormal.
The category of abelian groups is the fundamental example of an abelian category, and accordingly every subgroup of an abelian group is a normal subgroup.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, le conoyau d'un morphisme f : X → Y (par exemple un homomorphisme entre groupes ou bien un opérateur borné entre espaces de Hilbert) est la donnée d'un objet Q et d'un morphisme q : Y → Q tel que le morphisme composé soit le morphisme nul, et de plus Q est, en un certain sens, le plus "gros" objet possédant cette propriété. Souvent l'application q est sous-entendue, et Q est lui-même appelé conoyau de f. Les conoyaux sont les duaux des noyaux des catégories, d'où le nom.
In , a branch of mathematics, the image of a morphism is a generalization of the of a function. Given a and a morphism in , the image of is a monomorphism satisfying the following universal property: There exists a morphism such that . For any object with a morphism and a monomorphism such that , there exists a unique morphism such that . Remarks: such a factorization does not necessarily exist. is unique by definition of monic. therefore by monic. is monic. already implies that is unique.
La théorie des catégories est une théorie unificatrice des Mathématiques. La notion de noyau est une notion centrale en algèbre. Ici, le concept de noyau est un concept général applicable à de nombreuses branches des mathématiques abstraites. Considérons dans une catégorie deux flèches et de même source et de même but . Une flèche de but est dite noyau ou égalisateur du couple si elle vérifie les deux propriétés suivantes : (1) On a uk=vk (2) Pour toute flèche telle que l'on ait , il existe une flèche unique telle que .