Concept

Equatorial bulge

Summary
An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere. Earth ellipsoid The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about greater than its polar diameter, with a difference of about of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of , that difference would be only . While too small to notice visually, that difference is still more than twice the largest deviations of the actual surface from the ellipsoid, including the tallest mountains and deepest oceanic trenches. Earth's rotation also affects the sea level, the imaginary surface used as a reference frame from which to measure altitudes. This surface coincides with the mean water surface level in oceans, and is extrapolated over land by taking into account the local gravitational potential and the centrifugal force. The difference of the radii is thus about . An observer standing at sea level on either pole, therefore, is closer to Earth's center than if standing at sea level on the Equator. As a result, the highest point on Earth, measured from the center and outwards, is the peak of Mount Chimborazo in Ecuador rather than Mount Everest. But since the ocean also bulges, like Earth and its atmosphere, Chimborazo is not as high above sea level as Everest is. Similarly the lowest point on Earth, measured from the center and outwards, is the Litke Deep in Arctic Ocean rather than Challenger Deep in Pacific Ocean. But since the ocean also flattens, like Earth and its atmosphere, Litke Deep is not as low below sea level as Challenger Deep is. More precisely, Earth's surface is usually approximated by an ideal oblate ellipsoid, for the purposes of defining precisely the latitude and longitude grid for cartography, as well as the "center of the Earth".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.