An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.
Earth ellipsoid
The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about greater than its polar diameter, with a difference of about of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of , that difference would be only . While too small to notice visually, that difference is still more than twice the largest deviations of the actual surface from the ellipsoid, including the tallest mountains and deepest oceanic trenches.
Earth's rotation also affects the sea level, the imaginary surface used as a reference frame from which to measure altitudes. This surface coincides with the mean water surface level in oceans, and is extrapolated over land by taking into account the local gravitational potential and the centrifugal force.
The difference of the radii is thus about . An observer standing at sea level on either pole, therefore, is closer to Earth's center than if standing at sea level on the Equator. As a result, the highest point on Earth, measured from the center and outwards, is the peak of Mount Chimborazo in Ecuador rather than Mount Everest. But since the ocean also bulges, like Earth and its atmosphere, Chimborazo is not as high above sea level as Everest is. Similarly the lowest point on Earth, measured from the center and outwards, is the Litke Deep in Arctic Ocean rather than Challenger Deep in Pacific Ocean. But since the ocean also flattens, like Earth and its atmosphere, Litke Deep is not as low below sea level as Challenger Deep is.
More precisely, Earth's surface is usually approximated by an ideal oblate ellipsoid, for the purposes of defining precisely the latitude and longitude grid for cartography, as well as the "center of the Earth".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Purpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approac ...
Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Polaris, Earth turns counterclockwise. The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where Earth's axis of rotation meets its surface. This point is distinct from Earth's North Magnetic Pole.
Earth radius (denoted as R🜨 or ) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly (equatorial radius, denoted a) to a minimum of nearly (polar radius, denoted b). A nominal Earth radius is sometimes used as a unit of measurement in astronomy and geophysics, which is recommended by the International Astronomical Union to be the equatorial value. A globally-average value is usually considered to be with a 0.
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations. It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation.
Context. CP2 stars show periodic photometric, spectroscopic, and magnetic variations with the rotational period. They are generally slow rotators, with rotational periods exceeding half a day, except for the late B-type star HD 60431, which has an unusuall ...
Background All behaviour requires energy, and measuring energy expenditure in standard units (joules) is key to linking behaviour to ecological processes. Animal-borne accelerometers are commonly used to infer proxies of energy expenditure, termed 'dynamic ...