Chlorine trifluoride is an interhalogen compound with the formula . This colorless, poisonous, corrosive, and extremely reactive gas condenses to a pale-greenish yellow liquid, the form in which it is most often sold (pressurized at room temperature). Despite being famous for its extreme oxidation properties and igniting many things, chlorine trifluoride is not combustible itself. The compound is primarily of interest in plasmaless cleaning and etching operations in the semiconductor industry, in nuclear reactor fuel processing, historically as a component in rocket fuels, and various other industrial operations owing to its corrosive nature.
It was first reported in 1930 by Ruff and Krug who prepared it by fluorination of chlorine; this also produced Chlorine monofluoride (ClF) and the mixture was separated by distillation.
The molecular geometry of is approximately T-shaped, with one short bond (1.598 Å) and two long bonds (1.698 Å). This structure agrees with the prediction of VSEPR theory, which predicts lone pairs of electrons as occupying two equatorial positions of a hypothetic trigonal bipyramid. The elongated Cl-F axial bonds are consistent with hypervalent bonding.
Pure is stable to in quartz vessels; above this temperature, it decomposes by a free radical mechanism to its constituent elements.
Reactions with many metals give chlorides and fluorides. With phosphorus, it yields phosphorus trichloride () and phosphorus pentafluoride (), while sulfur yields sulfur dichloride () and sulfur tetrafluoride (). also reacts with water to give hydrogen fluoride and hydrogen chloride, along with oxygen and oxygen difluoride ():
It will also convert many metal oxides to metal halides and oxygen or oxygen difluoride.
It occurs as a ligand in the complex .
One of the main uses of is to produce uranium hexafluoride, , as part of nuclear fuel processing and reprocessing, by the fluorination of uranium metal:
The compound can also dissociate under the scheme:
In the semiconductor industry, chlorine trifluoride is used to clean chemical vapour deposition chambers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactive, as it reacts with all other elements except for the light inert gases. Among the elements, fluorine ranks 24th in universal abundance and 13th in terrestrial abundance.
In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions. Examples of this molecular geometry are phosphorus pentafluoride (), and phosphorus pentachloride () in the gas phase.
Valence shell electron pair repulsion (VSEPR) theory (ˈvɛspər,_vəˈsɛpər , ), is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. It is also named the Gillespie-Nyholm theory after its two main developers, Ronald Gillespie and Ronald Nyholm. The premise of VSEPR is that the valence electron pairs surrounding an atom tend to repel each other. The greater the repulsion, the higher in energy (less stable) the molecule is.
Explores the chemistry of sulfur and halogens, discussing properties, compounds, and applications of elements like sulfur, fluorine, and chlorine.
Explores the chemistry of halogens and noble gases, covering properties, reactions, and compounds of elements like chlorine, bromine, xenon, and radon.
Covers material and energy balances, properties of mixtures, and the formation of liquid solutions.
Ozone is a commonly applied disinfectant and oxidantin drinkingwater and has more recently been implemented for enhanced municipalwastewater treatment for potable reuse and ecosystem protection. Onedrawback is the potential formation of bromate, a possible ...
Observations are reported of HClO3 and HClO4 in the atmosphere and their widespread occurrence over the pan-Arctic during spring, providing further insights into atmospheric chlorine cycling in the polar environment. Chlorine radicals are strong atmospheri ...
NATURE PORTFOLIO2023
,
Chlorine dioxide (ClO2) applications to drinking water are limited by the formation of chlorite (ClO2-) which is regulated in many countries. However, when ClO2 is used as a pre-oxidant, ClO2- can be oxidized by chlorine during subsequent disinfection. In ...