Summary
Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS). In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. The radiation environment of deep space is different from that on the Earth's surface or in low Earth orbit, due to the much larger flux of high-energy galactic cosmic rays (GCRs), along with radiation from solar proton events (SPEs) and the radiation belts. Galactic cosmic rays (GCRs) consist of high energy protons (85%), alpha particles (14%) and other high energy nuclei (HZE ions). Solar energetic particles consist primarily of protons accelerated by the Sun to high energies via proximity to solar flares and coronal mass ejections. Heavy ions and low energy protons and helium particles are highly ionizing forms of radiation, which produce distinct biological damage compared to X-rays and gamma-rays. Microscopic energy deposition from highly ionizing particles consists of a core radiation track due to direct ionizations by the particle and low energy electrons produced in ionization, and a penumbra of higher energy electrons that may extend hundreds of microns from the particles path in tissue. The core track produces extremely large clusters of ionizations within a few nanometres, which is qualitatively distinct from energy deposition by X-rays and gamma rays; hence human epidemiology data which only exists for these latter forms of radiation is limited in predicting the health risks from space radiation to astronauts. The radiation belts are within Earth's magnetosphere and do not occur in deep space, while organ dose equivalents on the International Space Station are dominated by GCR not trapped radiation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
EE-583: Spacecraft avionics architectures
The course presents and analyses the different systems, architectures and components of spacecraft avionics (on board data handling and processing systems) controlling and commanding spacecraft and pa