Concept

Stars and bars (combinatorics)

In the context of combinatorial mathematics, stars and bars (also called "sticks and stones", "balls and bars", and "dots and dividers") is a graphical aid for deriving certain combinatorial theorems. It was popularized by William Feller in his classic book on probability. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. The stars and bars method is often introduced specifically to prove the following two theorems of elementary combinatorics concerning the number of solutions to an equation. For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x_1 + x_2 + x_3 + x_4 = 10 (with x_1, x_2, x_3, x_4 > 0) as the binomial coefficient This corresponds to compositions of an integer. For any pair of positive integers n and k, the number of k-tuples of non-negative integers whose sum is n is equal to the number of multisets of cardinality n taken from a set of size k, or equivalently, the number of multisets of cardinality k − 1 taken from a set of size n + 1. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x_1 + x_2 + x_3 + x_4 = 10 (with x_1, x_2, x_3, x_4 ) as: This corresponds to weak compositions of an integer. Suppose there are n objects (represented here by stars) to be placed into k bins, such that all bins contain at least one object. The bins are distinguishable (say they are numbered 1 to k) but the n stars are not (so configurations are only distinguished by the number of stars present in each bin). A configuration is thus represented by a k-tuple of positive integers, as in the statement of the theorem. For example, with n = 7 and k = 3, start by placing the stars in a line: The configuration will be determined once it is known which is the first star going to the second bin, and the first star going to the third bin, etc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (3)
Probability and Statistics for SIC
Delves into probability, statistics, random experiments, and statistical inference, with practical examples and insights.
Probability and Statistics
Introduces probability, statistics, distributions, inference, likelihood, and combinatorics for studying random events and network modeling.
Show more
Related concepts (2)
Twelvefold way
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. The idea of the classification is credited to Gian-Carlo Rota, and the name was suggested by Joel Spencer. Let N and X be finite sets. Let and be the cardinality of the sets. Thus N is an n-set, and X is an x-set.
Pascal's triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients arising in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy. The rows of Pascal's triangle are conventionally enumerated starting with row at the top (the 0th row). The entries in each row are numbered from the left beginning with and are usually staggered relative to the numbers in the adjacent rows.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.