In chemical kinetics, the Lindemann mechanism (also called the Lindemann–Christiansen mechanism or the Lindemann–Hinshelwood mechanism) is a schematic reaction mechanism for unimolecular reactions. Frederick Lindemann and J. A. Christiansen proposed the concept almost simultaneously in 1921, and Cyril Hinshelwood developed it to take into account the energy distributed among vibrational degrees of freedom for some reaction steps.
It breaks down an apparently unimolecular reaction into two elementary steps, with a rate constant for each elementary step. The rate law and rate equation for the entire reaction can be derived from the two step's rate equations and rate constants.
The Lindemann mechanism is used to model gas phase decomposition or isomerization reactions. Although the net formula for decomposition or isomerization appears to be unimolecular and suggests first-order kinetics in the reactant, the Lindemann mechanism shows that the unimolecular reaction step is preceded by a bimolecular activation step so that the kinetics may actually be second-order in certain cases.
The overall equation for a unimolecular reaction may be written A → P, where A is the initial reactant molecule and P is one or more products (one for isomerization, more for decomposition).
A Lindemann mechanism typically includes an activated reaction intermediate, labeled A*. The activated intermediate is produced from the reactant only after a sufficient activation energy is acquired by collision with a second molecule M, which may or may not be similar to A. It then either deactivates from A* back to A by another collision, or reacts in a unimolecular step to produce the product(s) P.
The two-step mechanism is then
The rate equation for the rate of formation of product P may be obtained by using the steady-state approximation, in which the concentration of intermediate A* is assumed constant because its rates of production and consumption are (almost) equal. This assumption simplifies the calculation of the rate equation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
The course covers the principles of chemical kinetics, including differential rate laws, derivation of exact and approximate integral rate laws for common elementary and composite reactions, fundament
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
In chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction. The detailed steps of a reaction are not observable in most cases. The conjectured mechanism is chosen because it is thermodynamically feasible and has experimental support in isolated intermediates (see next section) or other quantitative and qualitative characteristics of the reaction.
In chemical kinetics, a reaction rate constant or reaction rate coefficient (k) is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants. For a reaction between reactants A and B to form a product C, where A and B are reactants C is a product a, b, and c are stoichiometric coefficients, the reaction rate is often found to have the form: Here k is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the solution.
Covers the Dirac delta function, Laplace transforms, and unimolecular reactions with convolution emphasis.
,
Silver is one of the most studied electrode materials for the electrochemical reduction of carbon dioxide into carbon monoxide, a product with many industrial applications. There is a growing number of reports in which silver is implemented in gas diffusio ...
Heterogeneous ice nucleation is a ubiquitous process in the natural and built environment. Deposition ice nucleation, i.e. heterogeneous ice nucleation that - according to the traditional view - occurs in a subsaturated water vapor environment and in the a ...
Iron-exchanged zeolites are industrial heterogeneous catalysts deployed to remediate anthropogenic emissions of both nitrous oxide (N2O) and nitrogen oxides (NOx = NO + NO2). Despite the extensive scientific attention received, limited knowledge is availab ...