Random optimization (RO) is a family of numerical optimization methods that do not require the gradient of the problem to be optimized and RO can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods. The name random optimization is attributed to Matyas who made an early presentation of RO along with basic mathematical analysis. RO works by iteratively moving to better positions in the search-space which are sampled using e.g. a normal distribution surrounding the current position. Let f: Rn → R be the fitness or cost function which must be minimized. Let x ∈ Rn designate a position or candidate solution in the search-space. The basic RO algorithm can then be described as: Initialize x with a random position in the search-space. Until a termination criterion is met (e.g. number of iterations performed, or adequate fitness reached), repeat the following: Sample a new position y by adding a normally distributed random vector to the current position x If (f(y) < f(x)) then move to the new position by setting x = y Now x holds the best-found position. This algorithm corresponds to a (1+1) evolution strategy with constant step-size. Matyas showed the basic form of RO converges to the optimum of a simple unimodal function by using a limit-proof which shows convergence to the optimum is certain to occur if a potentially infinite number of iterations are performed. However, this proof is not useful in practice because a finite number of iterations can only be executed. In fact, such a theoretical limit-proof will also show that purely random sampling of the search-space will inevitably yield a sample arbitrarily close to the optimum. Mathematical analyses are also conducted by Baba and Solis and Wets to establish that convergence to a region surrounding the optimum is inevitable under some mild conditions for RO variants using other probability distributions for the sampling.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.