Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a defined domain (or input), including a variety of different types of objective functions and different types of domains.
Optimization problem
Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete:
An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found. They can include constrained problems and multimodal problems.
An optimization problem can be represented in the following way:
Given: a function f : A → from some set A to the real numbers
Sought: an element x0 ∈ A such that f(x0) ≤ f(x) for all x ∈ A ("minimization") or such that f(x0) ≥ f(x) for all x ∈ A ("maximization").
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Topology optimization (TO) is a mathematical method that optimizes material layout within a given design space, for a given set of loads, boundary conditions and constraints with the goal of maximizing the performance of the system. Topology optimization is different from shape optimization and sizing optimization in the sense that the design can attain any shape within the design space, instead of dealing with predefined configurations. The conventional topology optimization formulation uses a finite element method (FEM) to evaluate the design performance.
In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. It is also known as Rosenbrock's valley or Rosenbrock's banana function. The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult. The function is defined by It has a global minimum at , where .
Explores topological optimization for reducing mass while preserving mechanical properties through 3D metal printing.
«Quoi de plus naturel, lorsqu'un système peut être décrit formellement, que de tenter de l'améliorer? L'auteur de cet ouvrage conduit le lecteur avec patience (et humour) à la découverte de méthodes algorithmiques qui permettent d'aborder cette question. S ...
Presses Polytechniques et Universitaires Romandes2006