Tetraloops are a type of four-base hairpin loop motifs in RNA secondary structure that cap many double helices. There are many variants of the tetraloop. The published ones include ANYA,
CUYG,
GNRA,
UNAC
and UNCG.
Three types of tetraloops are common in ribosomal RNA: GNRA, UNCG and CUUG, in which the N could be either uracil, adenine, cytosine, or guanine, and the R is either guanine or adenine. These three sequences form stable and conserved tetraloops that play an important role in structural stability and biological function of 16S rRNA.
GNRA
The GNRA tetraloop has a guanine-adenine base-pair where the guanine is 5' to the helix and the adenine is 3' to the helix. Tetraloops with the sequence UMAC have essentially the same backbone fold as the GNRA tetraloop, but may be less likely to form tetraloop-receptor interactions. They may therefore be a better choice for closing stems when designing artificial RNAs.
The presence of the GNRA tetraloop provides an exceptional stability to RNA structure. GNRA occurs 50% more than other tetranucleotides due to their ability to withstand temperatures 4 °C higher than other RNA hairpins. This allows them to act as nucleation sites for proper folding of RNA. The rare hydrogen bonds between the first guanine and fourth adenine nucleotide, extensive stacking of nucleotide bases and hydrogen bonds between 2' OH of a ribose sugar and nitrogenous bases makes the tetraloop thermodynamically stable.
UNCG
In the UNCG is favorable thermodynamically and structurally due to hydrogen bonding, van der Waals interactions, coulombic interactions and the interactions between the RNA and the solvent. The UNCG tetraloops are more stable than DNA loops with the same sequence. The UUCG tetraloop is the most stable tetraloop. UUCG and GNRA tetraloops make up 70% of all tetraloops in 16S-rRNA .
CUUG
The CUUG tetraloop has the highest likelihood of conformational changes due to its structural flexibility. Out of the three tetraloops mentioned, this tetraloop is the most flexible since the second uracil is comparatively unrestricted.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensional structure. While such structures are diverse and seemingly complex, they are composed of recurring, easily recognizable tertiary structural motifs that serve as molecular building blocks. Some of the most common motifs for RNA and DNA tertiary structure are described below, but this information is based on a limited number of solved structures.
Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function. The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits. This useful distinction among scales is often expressed as a decomposition of molecular structure into four levels: primary, secondary, tertiary, and quaternary.
Covers Python basics such as syntax, variables, and functions, introducing the Renku platform for collaborative data science.
We present a multi-laboratory effort to describe the structural and dynamical properties of duplex B-DNA under physiological conditions. By processing a large amount of atomistic molecular dynamics simulations, we determine the sequence-dependent structura ...
The absorption, conversion and transport of electronic energy in molecular aggregates is at the heart of many important natural and artificial photochemical systems, including organic solar cell materials, photosynthetic light-harvesting complexes and DNA ...