Concept

Femtotechnology

Femtotechnology is a hypothetical term used in reference to structuring of matter on the scale of a femtometer, which is 10−15 m. This is a smaller scale in comparison with nanotechnology and picotechnology which refer to 10−9 m and 10−12 m respectively. Work in the femtometer range involves manipulation of excited energy states within atomic nuclei, specifically nuclear isomers, to produce metastable (or otherwise stabilized) states with unusual properties. In the extreme case, excited states of the individual nucleons that make up the atomic nucleus (protons and neutrons) are considered, ostensibly to tailor the behavioral properties of these particles. The most advanced form of molecular nanotechnology is often imagined to involve self-replicating molecular machines, and there have been some speculations suggesting something similar might be possible with analogues of molecules composed of nucleons rather than atoms. For example, the astrophysicist Frank Drake once speculated about the possibility of self-replicating organisms composed of such nuclear molecules living on the surface of a neutron star, a suggestion taken up in the science fiction novel Dragon's Egg by the physicist Robert Forward. It is thought by physicists that nuclear molecules may be possible, but they would be very short-lived, and whether they could actually be made to perform complex tasks such as self-replication, or what type of technology could be used to manipulate them, is unknown. Practical applications of femtotechnology are currently considered to be unlikely. The spacings between nuclear energy levels require equipment capable of efficiently generating and processing gamma rays, without equipment degradation. The nature of the strong interaction is such that excited nuclear states tend to be very unstable (unlike the excited electron states in Rydberg atoms), and there are a finite number of excited states below the nuclear binding energy, unlike the (in principle) infinite number of bound states available to an atom's electrons.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.