Concept

Femtotechnology

Femtotechnology is a hypothetical term used in reference to structuring of matter on the scale of a femtometer, which is 10−15 m. This is a smaller scale in comparison with nanotechnology and picotechnology which refer to 10−9 m and 10−12 m respectively. Work in the femtometer range involves manipulation of excited energy states within atomic nuclei, specifically nuclear isomers, to produce metastable (or otherwise stabilized) states with unusual properties. In the extreme case, excited states of the individual nucleons that make up the atomic nucleus (protons and neutrons) are considered, ostensibly to tailor the behavioral properties of these particles. The most advanced form of molecular nanotechnology is often imagined to involve self-replicating molecular machines, and there have been some speculations suggesting something similar might be possible with analogues of molecules composed of nucleons rather than atoms. For example, the astrophysicist Frank Drake once speculated about the possibility of self-replicating organisms composed of such nuclear molecules living on the surface of a neutron star, a suggestion taken up in the science fiction novel Dragon's Egg by the physicist Robert Forward. It is thought by physicists that nuclear molecules may be possible, but they would be very short-lived, and whether they could actually be made to perform complex tasks such as self-replication, or what type of technology could be used to manipulate them, is unknown. Practical applications of femtotechnology are currently considered to be unlikely. The spacings between nuclear energy levels require equipment capable of efficiently generating and processing gamma rays, without equipment degradation. The nature of the strong interaction is such that excited nuclear states tend to be very unstable (unlike the excited electron states in Rydberg atoms), and there are a finite number of excited states below the nuclear binding energy, unlike the (in principle) infinite number of bound states available to an atom's electrons.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (1)
Ultrashort pulse
In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier. They are characterized by a high peak intensity (or more correctly, irradiance) that usually leads to nonlinear interactions in various materials, including air.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.