Summary
In the theory of finite population sampling, a sampling design specifies for every possible sample its probability of being drawn. Mathematically, a sampling design is denoted by the function which gives the probability of drawing a sample During Bernoulli sampling, is given by where for each element is the probability of being included in the sample and is the total number of elements in the sample and is the total number of elements in the population (before sampling commenced). In business research, companies must often generate samples of customers, clients, employees, and so forth to gather their opinions. Sample design is also a critical component of marketing research and employee research for many organizations. During sample design, firms must answer questions such as: What is the relevant population, sampling frame, and sampling unit? What is the appropriate margin of error that should be achieved? How should sampling error and non-sampling error be assessed and balanced? These issues require very careful consideration, and good commentaries are provided in several sources.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Variational Algorithms: Quantum Computing Optimization
Introduces variational algorithms in quantum computing, focusing on optimization problems.
Related publications (8)
Related concepts (1)
Sampling (statistics)
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population, and thus, it can provide insights in cases where it is infeasible to measure an entire population.