Thermal emittance or thermal emissivity () is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body. Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property (of a homogeneous material), while emittivity refers to specific samples or objects.
For building products, thermal emittance measurements are taken for wavelengths in the infrared. Determining the thermal emittance and solar reflectance of building materials, especially roofing materials, can be very useful for reducing heating and cooling energy costs in buildings. Combined index Solar Reflectance Index (SRI) is often used to determine the overall ability to reflect solar heat and release thermal heat. A roofing surface with high solar reflectance and high thermal emittance will reflect solar heat and release absorbed heat readily. High thermal emittance material radiates thermal heat back into the atmosphere more readily than one with a low thermal emittance. In common construction applications, the thermal emittance of a surface is usually higher than 0.8–0.85.
High thermal emittance materials are essential to passive daytime radiative cooling, which uses surfaces high in thermal emittance and solar reflectance to lower surface temperatures by dissipating heat to outer space. It has been proposed as a solution to energy crises and global warming.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. Because all materials in nature absorb more heat during the day than at night, PDRC surfaces are designed to be high in solar reflectance (to minimize heat gain) and strong in longwave infrared (LWIR) thermal radiation heat transfer through the atmosphere's infrared window (8–13 μm) to cool temperatures during the daytime.
In the study of heat transfer, radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation. Radiative cooling has been applied in various contexts throughout human history, including ice making in India and Iran, heat shields for spacecraft, and in architecture. In 2014, a scientific breakthrough in the use of photonic metamaterials made daytime radiative cooling possible.
Reflective surfaces, or ground-based albedo modification (GBAM), is a solar radiation management method of enhancing Earth's albedo (the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface). The IPCC described this method as "whitening roofs, changes in land use management (e.g., no-till farming), change of albedo at a larger scale (covering glaciers or deserts with reflective sheeting and changes in ocean albedo).
With the advent of a new generation of switchable absorber coatings, overheating and the resulting stagnation of solar thermal collectors – until recently a common problem even in central European latitudes – can be successfully overcome. Based on thermoch ...
With the advent of a new generation of switchable absorber coatings, overheating and the resulting stagnation of solar thermal collectors – until recently a common problem even in central European latitudes – can be successfully overcome. Based on thermoch ...
Due to their simple design and operation, solar thermal collectors for domestic hot water gener-ation and space heating are one of the most common solar energy harvesting systems in use today. Dur-ing cold periods all the absorbed energy is useful. During ...