Concept

Passive daytime radiative cooling

Résumé
Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. Because all materials in nature absorb more heat during the day than at night, PDRC surfaces are designed to be high in solar reflectance (to minimize heat gain) and strong in longwave infrared (LWIR) thermal radiation heat transfer through the atmosphere's infrared window (8–13 μm) to cool temperatures during the daytime. It is also referred to as passive radiative cooling (PRC), daytime passive radiative cooling (DPRC), radiative sky cooling (RSC), photonic radiative cooling, and terrestrial radiative cooling. PDRC differs from solar radiation management because it increases radiative heat emission rather than merely reflecting the absorption of solar radiation. Some estimates propose that if 1–2% of the Earth's surface area were dedicated to PDRC that warming would cease and temperature increases would be rebalanced to survivable levels. Regional variations provide different cooling potentials with desert and temperate climates benefiting more from application than tropical climates, attributed to the effects of humidity and cloud cover on reducing the effectiveness of PDRCs. Low-cost scalable PDRC materials feasible for mass production have been developed, such as coatings, thin films, metafabrics, aerogels, and biodegradable surfaces, to reduce air conditioning, lower urban heat island effect, cool human body temperatures in extreme heat, and move toward carbon neutrality as a zero-energy cooling method. Application of PDRCs may also increase the efficiency of solar energy systems, dew collection techniques, and thermoelectric generation. PDRCs can be modified to be self-adaptive if necessary, 'switching' from passive cooling to heating to mitigate any potential "overcooling" effects in urban environments.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.