In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.
The name "Desargues graph" has also been used to refer to a ten-vertex graph, the complement of the Petersen graph, which can also be formed as the bipartite half of the 20-vertex Desargues graph.
There are several different ways of constructing the Desargues graph:
It is the generalized Petersen graph G(10,3). To form the Desargues graph in this way, connect ten of the vertices into a regular decagon, and connect the other ten vertices into a ten-pointed star that connects pairs of vertices at distance three in a second decagon. The Desargues graph consists of the 20 edges of these two polygons together with an additional 10 edges connecting points of one decagon to the corresponding points of the other.
It is the Levi graph of the Desargues configuration. This configuration consists of ten points and ten lines describing two perspective triangles, their center of perspectivity, and their axis of perspectivity. The Desargues graph has one vertex for each point, one vertex for each line, and one edge for every incident point-line pair. Desargues' theorem, named after 17th-century French mathematician Gérard Desargues, describes a set of points and lines forming this configuration, and the configuration and the graph take their name from it.
It is the bipartite double cover of the Petersen graph, formed by replacing each Petersen graph vertex by a pair of vertices and each Petersen graph edge by a pair of crossed edges.
It is the bipartite Kneser graph H_5,2. Its vertices can be labeled by the ten two-element subsets and the ten three-element subsets of a five-element set, with an edge connecting two vertices when one of the corresponding sets is a subset of the other.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru. It has chromatic number 2, chromatic index 3, diameter 4, radius 4 and girth 6. It is also a 3-vertex-connected and 3-edge-connected graph. It has book thickness 3 and queue number 2. The Nauru graph requires at least eight crossings in any drawing of it in the plane.
In geometry, the Desargues configuration is a configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues. The Desargues configuration can be constructed in two dimensions from the points and lines occurring in Desargues's theorem, in three dimensions from five planes in general position, or in four dimensions from the 5-cell, the four-dimensional regular simplex. It has a large group of symmetries, taking any point to any other point and any line to any other line.
In graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K_2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G. It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice. The bipartite double cover of G has two vertices u_i and w_i for each vertex v_i of G.
The vertex set of the Kneser graph K(n, k) is V = (([n])(k)) and two vertices are adjacent if the corresponding sets are disjoint. For any graph F, the largest size of a vertex set U subset of V such that K(n, k)[U] is F-free, was recently determined by Al ...
ELECTRONIC JOURNAL OF COMBINATORICS2019
A Kneser graph KG(n,k) is a graph whose vertices are in oneto-one correspondence with k -element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lowisz states that the chromatic num ...
Determining the size of a maximum independent set of a graph G, denoted by alpha(G), is an NP-hard problem. Therefore many attempts are made to find upper and lower bounds, or exact values of alpha(G) for special classes of graphs. This paper is aimed towa ...