In graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K_2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G.
It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice.
The bipartite double cover of G has two vertices u_i and w_i for each vertex v_i of G. Two vertices u_i and w_j are connected by an edge in the double cover if and only if v_i and v_j are connected by an edge in G. For instance, below is an illustration of a bipartite double cover of a non-bipartite graph G. In the illustration, each vertex in the tensor product is shown using a color from the first term of the product (G) and a shape from the second term of the product (K_2); therefore, the vertices u_i in the double cover are shown as circles while the vertices w_i are shown as squares.
The bipartite double cover may also be constructed using adjacency matrices (as described below) or as the derived graph of a voltage graph in which each edge of G is labeled by the nonzero element of the two-element group.
The bipartite double cover of the Petersen graph is the Desargues graph: K_2 × G(5,2) = G(10,3).
The bipartite double cover of a complete graph K_n is a crown graph (a complete bipartite graph K_n,n minus a perfect matching). In particular, the bipartite double cover of the graph of a tetrahedron, K_4, is the graph of a cube.
The bipartite double cover of an odd-length cycle graph is a cycle of twice the length, while the bipartite double of any bipartite graph (such as an even length cycle, shown in the following example) is formed by two disjoint copies of the original graph.
If an undirected graph G has a matrix A as its adjacency matrix, then the adjacency matrix of the double cover of G is
and the biadjacency matrix of the double cover of G is just A itself.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...
In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases. The name "Desargues graph" has also been used to refer to a ten-vertex graph, the complement of the Petersen graph, which can also be formed as the bipartite half of the 20-vertex Desargues graph.
In graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and vertices (g,h) and math|(''g,h' ) are adjacent in G × H if and only if g is adjacent to g' in G, and h is adjacent to h' in H. The tensor product is also called the direct product, Kronecker product, categorical product, cardinal product, relational product, weak direct product, or conjunction'''.
In the mathematical field of graph theory, a graph homomorphism is a mapping between two graphs that respects their structure. More concretely, it is a function between the vertex sets of two graphs that maps adjacent vertices to adjacent vertices. Homomorphisms generalize various notions of graph colorings and allow the expression of an important class of constraint satisfaction problems, such as certain scheduling or frequency assignment problems.
Let c denote the largest constant such that every C-6-free graph G contains a bipartite and C-4-free subgraph having a fraction c of edges of G. Gyori, Kensell and Tompkins showed that 3/8
Vizing's celebrated theorem asserts that any graph of maximum degree Delta admits an edge coloring using at most Delta + 1 colors. In contrast, Bar-Noy, Motwani and Naor showed over a quarter century ago that the trivial greedy algorithm, which uses 2 Delt ...