A momentum exchange tether is a kind of space tether that could theoretically be used as a launch system, or to change spacecraft orbits. Momentum exchange tethers create a controlled force on the end-masses of the system due to the pseudo-force known as centrifugal force. While the tether system rotates, the objects on either end of the tether will experience continuous acceleration; the magnitude of the acceleration depends on the length of the tether and the rotation rate. Momentum exchange occurs when an end body is released during the rotation. The transfer of momentum to the released object will cause the rotating tether to lose energy, and thus lose velocity and altitude. However, using electrodynamic tether thrusting, or ion propulsion the system can then re-boost itself with little or no expenditure of consumable reaction mass.
A non-rotating tether is a rotating tether that rotates exactly once per orbit so that it always has a vertical orientation relative to the parent body. A spacecraft arriving at the lower end of this tether, or departing from the upper end, will take momentum from the tether, while a spacecraft departing from the lower end of the tether, or arriving at the upper end, will add momentum to the tether.
In some cases momentum exchange systems are intended to run as balanced transportation schemes where an arriving spacecraft or payload is exchanged with one leaving with the same speed and mass, and then no net change in momentum or angular momentum occurs.
Gravity-gradient stabilization
Gravity-gradient stabilization, also called "gravity stabilization" and "tidal stabilization", is a simple and reliable method for controlling the attitude of a satellite that requires no electronic control systems, rocket motors or propellant.
This type of attitude control tether has a small mass on one end, and a satellite on the other. Tidal forces stretch the tether between the two masses. There are two ways of explaining tidal forces.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.
Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines. Tether satellites might be used for various purposes, including research into tether propulsion, tidal stabilization and orbital plasma dynamics.
A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable (also called a tether) anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to the immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit (35,786 km altitude).
Autonomous robots have the potential to fundamentally transform conventional farming methods, e.g. by enabling economically viable farming of sloped arable land. However, navigation on slopes in harsh conditions is challenging for robots as they must be pr ...
TAYLOR & FRANCIS LTD2023
This thesis presents an efficient and extensible numerical software framework for real-time model-based control. We are motivated by complex and challenging mechatronic applications spanning from flight control of fixed-wing aircraft and thrust vector cont ...
EPFL2022
, , , ,
Developing robots that can explore environments without disturbing the natural flora and fauna could allow a safe exploration for both the robot and its surroundings. However, this can involve exploring complex or challenging environments, for example extr ...