Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a prover and a verifier. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover possesses unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct. All interactive proof systems have two requirements: Completeness: if the statement is true, the honest prover (that is, one following the protocol properly) can convince the honest verifier that it is indeed true. Soundness: if the statement is false, no prover, even if it doesn't follow the protocol, can convince the honest verifier that it is true, except with some small probability. The specific nature of the system, and so the complexity class of languages it can recognize, depends on what sort of bounds are put on the verifier, as well as what abilities it is given—for example, most interactive proof systems depend critically on the verifier's ability to make random choices. It also depends on the nature of the messages exchanged—how many and what they can contain. Interactive proof systems have been found to have some important implications for traditional complexity classes defined using only one machine. The main complexity classes describing interactive proof systems are AM and IP. Every interactive proof system defines a formal language of strings . Soundness of the proof system refers to the property that no prover can make the verifier accept for the wrong statement except with some small probability. The upper bound of this probability is referred to as the soundness error of a proof system. More formally, for every prover , and every : for some .
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...