Gas diffusion electrodes (GDE) are electrodes with a conjunction of a solid, liquid and gaseous interface, and an electrical conducting catalyst supporting an electrochemical reaction between the liquid and the gaseous phase.
GDEs are used in fuel cells, where oxygen and hydrogen react at the gas diffusion electrodes, to form water, while converting the chemical bond energy into electrical energy. Usually the catalyst is fixed in a porous foil, so that the liquid and the gas can interact. Besides these wetting characteristics, the gas diffusion electrode must, of course, offer an optimal electric conductivity, in order to enable an electron transport with low ohmic resistance.
An important prerequisite for the operation of gas diffusion electrodes is that both the liquid and the gaseous phase coexist in the pore system of the electrodes which can be demonstrated with the Young–Laplace equation:
The gas pressure p is in relation with the liquid in the pore system over the pore radius r, the surface tension γ of the liquid and the contact angle Θ. This equation is to be taken as a guide for determination because there are too many unknown, or difficult to achieve, parameters. When the surface tension is considered, the difference in surface tension of the solid and the liquid have to be taken into account. But the surface tension of catalysts such as platinum on carbon or silver are hardly measurable. The contact angle on a flat surface can be determined with a microscope. A single pore, however, cannot be examined so it is necessary to determine the pore system of an entire electrode. Thus in order to create an electrode area for liquid and gas, the path can be chosen to create different pore radius r, or to create different wetting angles Θ.
In this image of a sintered electrode it can be seen that three different grain sizes were used. The different layers were:
top layer of fine-grained material
layer from different groups
gas distribution layer of coarse-grained material
Most of the electrodes that were manufactured from 1950 to 1970 with the sintered method were for use in fuel cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%. NASA has used alkaline fuel cells since the mid-1960s, in the Apollo-series missions and on the Space Shuttle. The fuel cell produces power through a redox reaction between hydrogen and oxygen.
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to 100 °C) and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity.
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.
Explores the principles of batteries and fuel cells, focusing on their operation and components, illustrated using a classic car battery as an example.
A reversible photo-electrochemical device operating under concentrated irradiation could offer a stand-alone solution for producing solar fuel (in photo-driven electrolysis mode) and power (in fuel cell mode). This strategy would present the advantage of h ...
2024
, , ,
In Proton Exchange Membrane Fuel Cells (PEMFCs), the presence of residual water within the Gas Diffusion Layer (GDL) poses challenges during cold starts and accelerates degradation. A computational model based on the Lattice Boltzmann Method (LBM) was deve ...
A gas diffusion electrode (GDE) based CO2 electrolyzer shows enhanced CO2 transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a micr ...