Concept

Newcomen atmospheric engine

Summary
The atmospheric engine was invented by Thomas Newcomen in 1712, and is often referred to as the Newcomen fire engine (see below) or simply as a Newcomen engine. The engine was operated by condensing steam drawn into the cylinder, thereby creating a partial vacuum which allowed the atmospheric pressure to push the piston into the cylinder. It was historically significant as the first practical device to harness steam to produce mechanical work. Newcomen engines were used throughout Britain and Europe, principally to pump water out of mines. Hundreds were constructed throughout the 18th century. James Watt's later engine design was an improved version of the Newcomen engine that roughly doubled fuel efficiency. Many atmospheric engines were converted to the Watt design, for a price which was based on a fraction of the fuel-savings. As a result, Watt is today better known than Newcomen in relation to the origin of the steam engine. Prior to Newcomen a number of small steam devices of various sorts had been made, but most were essentially novelties. Around 1600 a number of experimenters used steam to power small fountains working like a coffee percolator. First a container was filled with water via a pipe, which extended through the top of the container to nearly the bottom. The bottom of the pipe would be submerged in the water, making the container airtight. The container was then heated to make the water boil. The steam generated pressurized the container, but the inner pipe, immersed at the bottom by liquid, and lacking an airtight seal at top, remained at a lower pressure; expanding steam forced the water at the bottom of the container into and up the pipe to spurt out of a nozzle on top. These devices had limited effectiveness but illustrated the principle's viability. In 1606, the Spaniard, Jerónimo de Ayanz y Beaumont demonstrated and was granted a patent for a steam powered water pump. The pump was successfully used to drain the inundated mines of Guadalcanal, Spain.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.