In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change. In its simple form, the compressibility (denoted β in some fields) may be expressed as
where V is volume and p is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature is called the isothermal bulk modulus.
The specification above is incomplete, because for any object or system the magnitude of the compressibility depends strongly on whether the process is isentropic or isothermal. Accordingly, isothermal compressibility is defined:
where the subscript T indicates that the partial differential is to be taken at constant temperature.
Isentropic compressibility is defined:
where S is entropy. For a solid, the distinction between the two is usually negligible.
Since the density ρ of a material is inversely proportional to its volume, it can be shown that in both cases
The speed of sound is defined in classical mechanics as:
It follows, by replacing partial derivatives, that the isentropic compressibility can be expressed as:
The inverse of the compressibility is called the bulk modulus, often denoted K (sometimes B or ).).
The compressibility equation relates the isothermal compressibility (and indirectly the pressure) to the structure of the liquid.
Compressibility factor
The isothermal compressibility is generally related to the isentropic (or adiabatic) compressibility by a few relations:
where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and is the thermal pressure coefficient.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Delves into the innovative Background-Oriented Schlieren technique for visualizing shock waves and compressible flow phenomena using environmental patterns.
Gas is one of the four fundamental states of matter. The others are solid, liquid, and plasma. A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by γ (gamma) for an ideal gas or κ (kappa), the isentropic exponent for a real gas. The symbol γ is used by aerospace and chemical engineers.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matter.
Binary fluids are present in a wide variety of systems at microscales, such as microfluidic devices containing drops, fluids with air bubbles trapped in them, and devices designed to mix fluids or to make two fluid substances react. Microfluidics devices a ...
2020
A unified numerical framework is presented for the modelling of multiphasic viscoelasticand elastic flows. The rheologies considered range from incompressible Newtonian orOldroyd-B viscoelastic fluids to Neo-Hookean elastic solids. The model is formulatedi ...
The hydrostatic compaction of composites comprising a closely-packed particle-bed filled by a dense matrix is measured experimentally using a fluid-pressurization apparatus. A highly compliant polymer or pure aluminium are infiltrated into preforms of pack ...