In crystallography, a vacancy is a type of point defect in a crystal where an atom is missing from one of the lattice sites. Crystals inherently possess imperfections, sometimes referred to as crystallographic defects.
Vacancies occur naturally in all crystalline materials. At any given temperature, up to the melting point of the material, there is an equilibrium concentration (ratio of vacant lattice sites to those containing atoms). At the melting point of some metals the ratio can be approximately 1:1000. This temperature dependence can be modelled by
where Nv is the vacancy concentration, Qv is the energy required for vacancy formation, kB is the Boltzmann constant, T is the absolute temperature, and N is the concentration of atomic sites i.e.
where m is mass, NA the Avogadro constant, and M the molar mass.
It is the simplest point defect. In this system, an atom is missing from its regular atomic site. Vacancies are formed during solidification due to vibration of atoms, local rearrangement of atoms, plastic deformation and ionic bombardments.
The creation of a vacancy can be simply modeled by considering the energy required to break the bonds between an atom inside the crystal and its nearest neighbor atoms. Once that atom is removed from the lattice site, it is put back on the surface of the crystal and some energy is retrieved because new bonds are established with other atoms on the surface. However, there is a net input of energy because there are fewer bonds between surface atoms than between atoms in the interior of the crystal.
In most applications vacancy defects are irrelevant to the intended purpose of a material, as they are either too few or spaced throughout a multi-dimensional space in such a way that force or charge can move around the vacancy. In the case of more constrained structures like carbon nanotubes however, vacancies and other crystalline defects can significantly weaken the material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the structure and stability of defects in crystals, emphasizing their impact on material properties.
Explores the difference between ideal and real surfaces, defects, and surface reconstructions.
Explores electron-dominated structures of order, superlattices observation, and disorder-order transformations' impact on mechanical properties.
The properties of crystals and polycrystalline (ceramic) materials including electrical, thermal and electromechanical phenomena are studied in connection with structures, point defects and phase rela
With this course, the student will learn advanced methods in transmission electron microscopy, especially what is the electron optical setup involved in the acquisition, and how to interpret the data.
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
Graphene (ˈgræfiːn) is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by σ-bonds and a delocalised π-bond, which contributes to a valence band that extends over the whole sheet.
A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell parameters in crystals, exhibit a periodic crystal structure, but this is usually imperfect. Several types of defects are often characterized: point defects, line defects, planar defects, bulk defects. Topological homotopy establishes a mathematical method of characterization.
, ,
The ionic defects of hetero-junction interfaces always attract and trap carriers via surface electrostatic forces, which are crucial for the efficiency and intrinsic stability of perovskite solar cells (PSCs). Herein, functionalized carbon nanotubes (CNTs) ...
ROYAL SOC CHEMISTRY2023
, ,
A controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein ...
WILEY-V C H VERLAG GMBH2022
,
Along with recent advancements in thin-film technologies, the engineering of complex transition metal oxide heterostructures offers the possibility of creating novel and tunable multifunctionalities. A representative complex oxide is the perovskite stronti ...