In graph theory, the clique-width of a graph G is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be small for dense graphs.
It is defined as the minimum number of labels needed to construct G by means of the following 4 operations :
Creation of a new vertex v with label i (denoted by i(v))
Disjoint union of two labeled graphs G and H (denoted by )
Joining by an edge every vertex labeled i to every vertex labeled j (denoted by η(i,j)), where i ≠ j
Renaming label i to label j (denoted by ρ(i,j))
Graphs of bounded clique-width include the cographs and distance-hereditary graphs. Although it is NP-hard to compute the clique-width when it is unbounded, and unknown whether it can be computed in polynomial time when it is bounded, efficient approximation algorithms for clique-width are known.
Based on these algorithms and on Courcelle's theorem, many graph optimization problems that are NP-hard for arbitrary graphs can be solved or approximated quickly on the graphs of bounded clique-width.
The construction sequences underlying the concept of clique-width were formulated by Courcelle, Engelfriet, and Rozenberg in 1990 and by . The name "clique-width" was used for a different concept by . By 1993, the term already had its present meaning.
Cographs are exactly the graphs with clique-width at most 2.
Every distance-hereditary graph has clique-width at most 3. However, the clique-width of unit interval graphs is unbounded (based on their grid structure).
Similarly, the clique-width of bipartite permutation graphs is unbounded (based on similar grid structure).
Based on the characterization of cographs as the graphs with no induced subgraph isomorphic to a path with four vertices, the clique-width of many graph classes defined by forbidden induced subgraphs has been classified.
Other graphs with bounded clique-width include the k-leaf powers for bounded values of k; these are the induced subgraphs of the leaves of a tree T in the graph power Tk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a branch of discrete mathematics, a distance-hereditary graph (also called a completely separable graph) is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph. Distance-hereditary graphs were named and first studied by , although an equivalent class of graphs was already shown to be perfect in 1970 by Olaru and Sachs.
In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs.
In graph theory, a cograph, or complement-reducible graph, or P4-free graph, is a graph that can be generated from the single-vertex graph K1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes K1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C.
This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most of the work on distributed vertex coloring so far has focused on ...
Cographs constitute a small point in the atlas of graph classes. However, by zooming in on this point, we discover a complex world, where many parameters jump from finiteness to infinity. In the present paper, we identify several milestones in the world of ...
In many applications, a dataset can be considered as a set of observed signals that live on an unknown underlying graph structure. Some of these signals may be seen as white noise that has been filtered on the graph topology by a graph filter. Hence, the k ...