Boundary currents are ocean currents with dynamics determined by the presence of a coastline, and fall into two distinct categories: western boundary currents and eastern boundary currents. Eastern boundary currents are relatively shallow, broad and slow-flowing. They are found on the eastern side of oceanic basins (adjacent to the western coasts of continents). Subtropical eastern boundary currents flow equatorward, transporting cold water from higher latitudes to lower latitudes; examples include the Benguela Current, the Canary Current, the Humboldt (Peru) Current, and the California Current. Coastal upwelling often brings nutrient-rich water into eastern boundary current regions, making them productive areas of the ocean. Western boundary currents may themselves be divided into sub-tropical or low-latitude western boundary currents. Sub-tropical western boundary currents are warm, deep, narrow, and fast-flowing currents that form on the west side of ocean basins due to western intensification. They carry warm water from the tropics poleward. Examples include the Gulf Stream, the Agulhas Current, and the Kuroshio Current. Low-latitude western boundary currents are similar to sub-tropical western boundary currents but carry cool water from the subtropics equatorward. Examples include the Mindanao Current and the North Brazil Current. Western intensification applies to the western arm of an oceanic current, particularly a large gyre in such a basin. The trade winds blow westward in the tropics. The westerlies blow eastward at mid-latitudes. This applies a stress to the ocean surface with a curl in north and south hemispheres, causing Sverdrup transport equatorward (toward the tropics). Because of conservation of mass and of potential vorticity, that transport is balanced by a narrow, intense poleward current, which flows along the western coast, allowing the vorticity introduced by coastal friction to balance the vorticity input of the wind. The reverse effect applies to the polar gyres – the sign of the wind stress curl and the direction of the resulting currents are reversed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
PHYS-201(e): General physics: electromagnetism
Introduction to electromagnetism.
HUM-207(a): Social and political ethics B
Objectif général de ce cours : permettre aux étudiant-e-s d'identifier et d'utiliser les outils de la philosophie et plus spécifiquement de l'éthique, dans le contexte de questions sociales et politiq
HUM-239: Psychology of emotion
On s'intéresse ici à nos réactions émotionnelles : comment elles émergent ? Quelles sont les théories du domaine ? Comment elles influencent notre quotidien ? Nous nous pencherons aussi sur les phénom
Show more
Related lectures (37)
Magnetostatics: Currents and Fields
Explores the comparison between electrostatics and magnetostatics, forces on currents, the Biot-Savart law, and applications of magnetic fields.
Coaxial Cable: Magnetic Field Analysis
Analyzes the magnetic field around a coaxial cable and its resistance to external disturbances.
DC Generator and Induction in Closed Circuit
Showcases a DC generator providing currents to lamps in parallel.
Show more
Related publications (278)
Related concepts (16)
Wind stress
In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. Stress is the quantity that describes the magnitude of a force that is causing a deformation of an object. Therefore, stress is defined as the force per unit area and its SI unit is the Pascal. When the deforming force acts parallel to the object's surface, this force is called a shear force and the stress it causes is called a shear stress.
Gulf Stream
The Gulf Stream, together with its northern extension the North Atlantic Drift, is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude (North Carolina) and moves toward Northwest Europe as the North Atlantic Current. The process of western intensification causes the Gulf Stream to be a northward-accelerating current off the east coast of North America.
Benguela Current
The Benguela Current bɛŋˈɡɛlə is the broad, northward flowing ocean current that forms the eastern portion of the South Atlantic Ocean gyre. The current extends from roughly Cape Point in the south, to the position of the Angola-Benguela front in the north, at around 16°S. The current is driven by the prevailing south easterly trade winds. Inshore of the Benguela Current proper, the south easterly winds drive coastal upwelling, forming the Benguela Upwelling System.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.