Concept

Relativistic Breit–Wigner distribution

The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function, where k is a constant of proportionality, equal to with (This equation is written using natural units, ħ = c = 1.) It is most often used to model resonances (unstable particles) in high-energy physics. In this case, E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1/Γ. (With units included, the formula is τ = ħ/Γ.) The probability of producing the resonance at a given energy E is proportional to f (E), so that a plot of the production rate of the unstable particle as a function of energy traces out the shape of the relativistic Breit–Wigner distribution. Note that for values of E off the maximum at M such that E2 − M2 = MΓ, (hence E − M = Γ/2 for M ≫ Γ), the distribution f has attenuated to half its maximum value, which justifies the name for Γ, width at half-maximum. In the limit of vanishing width, Γ → 0, the particle becomes stable as the Lorentzian distribution f sharpens infinitely to 2Mδ(E2 − M2). In general, Γ can also be a function of E; this dependence is typically only important when Γ is not small compared to M and the phase space-dependence of the width needs to be taken into account. (For example, in the decay of the rho meson into a pair of pions.) The factor of M2 that multiplies Γ2 should also be replaced with E2 (or E 4/M2, etc.) when the resonance is wide. The form of the relativistic Breit–Wigner distribution arises from the propagator of an unstable particle, which has a denominator of the form p2 − M2 + iMΓ. (Here, p2 is the square of the four-momentum carried by that particle in the tree Feynman diagram involved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.