The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function, where k is a constant of proportionality, equal to with (This equation is written using natural units, ħ = c = 1.) It is most often used to model resonances (unstable particles) in high-energy physics. In this case, E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1/Γ. (With units included, the formula is τ = ħ/Γ.) The probability of producing the resonance at a given energy E is proportional to f (E), so that a plot of the production rate of the unstable particle as a function of energy traces out the shape of the relativistic Breit–Wigner distribution. Note that for values of E off the maximum at M such that E2 − M2 = MΓ, (hence E − M = Γ/2 for M ≫ Γ), the distribution f has attenuated to half its maximum value, which justifies the name for Γ, width at half-maximum. In the limit of vanishing width, Γ → 0, the particle becomes stable as the Lorentzian distribution f sharpens infinitely to 2Mδ(E2 − M2). In general, Γ can also be a function of E; this dependence is typically only important when Γ is not small compared to M and the phase space-dependence of the width needs to be taken into account. (For example, in the decay of the rho meson into a pair of pions.) The factor of M2 that multiplies Γ2 should also be replaced with E2 (or E 4/M2, etc.) when the resonance is wide. The form of the relativistic Breit–Wigner distribution arises from the propagator of an unstable particle, which has a denominator of the form p2 − M2 + iMΓ. (Here, p2 is the square of the four-momentum carried by that particle in the tree Feynman diagram involved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.