The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function, where k is a constant of proportionality, equal to with (This equation is written using natural units, ħ = c = 1.) It is most often used to model resonances (unstable particles) in high-energy physics. In this case, E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1/Γ. (With units included, the formula is τ = ħ/Γ.) The probability of producing the resonance at a given energy E is proportional to f (E), so that a plot of the production rate of the unstable particle as a function of energy traces out the shape of the relativistic Breit–Wigner distribution. Note that for values of E off the maximum at M such that E2 − M2 = MΓ, (hence E − M = Γ/2 for M ≫ Γ), the distribution f has attenuated to half its maximum value, which justifies the name for Γ, width at half-maximum. In the limit of vanishing width, Γ → 0, the particle becomes stable as the Lorentzian distribution f sharpens infinitely to 2Mδ(E2 − M2). In general, Γ can also be a function of E; this dependence is typically only important when Γ is not small compared to M and the phase space-dependence of the width needs to be taken into account. (For example, in the decay of the rho meson into a pair of pions.) The factor of M2 that multiplies Γ2 should also be replaced with E2 (or E 4/M2, etc.) when the resonance is wide. The form of the relativistic Breit–Wigner distribution arises from the propagator of an unstable particle, which has a denominator of the form p2 − M2 + iMΓ. (Here, p2 is the square of the four-momentum carried by that particle in the tree Feynman diagram involved.
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Roberto Castello, Alessandro Degano, Xin Chen, Davide Di Croce, Mingkui Wang, Zhirui Xu, Chao Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Abhisek Datta, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Kai Yi, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Lei Feng, Muhammad Waqas, Shuai Liu, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Aram Avetisyan, Ali Harb, Benjamin William Allen, Pratyush Das, Miao Hu, Wenjing Wu