Human impact on the environment (or anthropogenic environmental impact) refers to changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused directly or indirectly by humans. Modifying the environment to fit the needs of society (as in the built environment) is causing severe effects including global warming, environmental degradation (such as ocean acidification), mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Some human activities that cause damage (either directly or indirectly) to the environment on a global scale include population growth, neoliberal economic policies and rapid economic growth, overconsumption, overexploitation, pollution, and deforestation. Some of the problems, including global warming and biodiversity loss, have been proposed as representing catastrophic risks to the survival of the human species.
The term anthropogenic designates an effect or object resulting from human activity. The term was first used in the technical sense by Russian geologist Alexey Pavlov, and it was first used in English by British ecologist Arthur Tansley in reference to human influences on climax plant communities. The atmospheric scientist Paul Crutzen introduced the term "Anthropocene" in the mid-1970s. The term is sometimes used in the context of pollution produced from human activity since the start of the Agricultural Revolution but also applies broadly to all major human impacts on the environment. Many of the actions taken by humans that contribute to a heated environment stem from the burning of fossil fuel from a variety of sources, such as: electricity, cars, planes, space heating, manufacturing, or the destruction of forests.
Overconsumption
Overconsumption is a situation where resource use has outpaced the sustainable capacity of the ecosystem. It can be measured by the ecological footprint, a resource accounting approach which compares human demand on ecosystems with the amount of planet matter ecosystems can renew.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Anthropogenic hazards are hazards caused by human action or inaction. They are contrasted with natural hazards. Anthropogenic hazards may adversely affect humans, other organisms, biomes, and ecosystems. They can even cause an omnicide. The frequency and severity of hazards are key elements in some risk analysis methodologies. Hazards may also be described in relation to the impact that they have. A hazard only exists if there is a pathway to exposure.
Overconsumption describes a situation where a consumer overuses their available goods and services to where they can't, or don't want to, replenish or reuse them. In microeconomics, this may be described as the point where the marginal cost of a consumer is greater than their marginal utility. The term overconsumption is quite controversial in use and does not necessarily have a single unifying definition. When used to refer to natural resources to the point where the environment is negatively affected, is it synonymous with the term overexploitation.
The Anthropocene (ˈænθrəpəˌsiːn,_ænˈθrɒpə- ) is a proposed geological epoch dating from the commencement of significant human impact on Earth's geology and ecosystems, including, but not limited to, anthropogenic climate change. neither the International Commission on Stratigraphy (ICS) nor the International Union of Geological Sciences (IUGS) has officially approved the term as a recognised subdivision of geologic time, although the Anthropocene Working Group (AWG) of the Subcommission on Quaternary Stratigraphy (SQS) of the ICS voted in April 2016 to proceed towards a formal golden spike (GSSP) proposal to define the Anthropocene epoch in the geologic time scale (GTS) and presented the recommendation to the International Geological Congress in August 2016.
Présentation des bases des études d'impact, du contexte et des outils d'évaluation de chacun des sujets et des chapitres. Illustration par de nombreux cas réels, et par un travail de groupe. Discussio
This course provides an overview of global environmental change through the perspective of the planetary boundaries and examines how human health is interlinked with social and ecological contexts.
L'objectif général de ce cours est de permettre aux étudiant-e-s:
de saisir les questions environnementales en tant que questions éthiques;
de clarifier le point de vue à partir duquel apparaît leur
Explores the limitations and strengths of environmental impact studies, emphasizing the importance of comprehensive assessments and public participation.
Water impacts form the critical load case for high-performance carbon fibre reinforced polymer (CFRP) racing craft. Such events produce a peaked, non-uniform pressure distribution that travels along a hull panel as it is immersed. Current design standards ...
This research aims to compare the greenhouse gas (GHG) emissions of new neighbourhood projects near the Rhône River in France and Switzerland. The study considers the influence of the river on energy demand and resilience to climate change of 12 project-ba ...
Wrocław University of Science and Technology Publishing House2024
Anthropogenic modification of natural landscapes to urban environments impacts land-atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but c ...