In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi, who looked for the most general way to quantify information while preserving additivity for independent events. In the context of fractal dimension estimation, the Rényi entropy forms the basis of the concept of generalized dimensions.
The Rényi entropy is important in ecology and statistics as index of diversity. The Rényi entropy is also important in quantum information, where it can be used as a measure of entanglement. In the Heisenberg XY spin chain model, the Rényi entropy as a function of α can be calculated explicitly because it is an automorphic function with respect to a particular subgroup of the modular group. In theoretical computer science, the min-entropy is used in the context of randomness extractors.
The Rényi entropy of order , where and , is defined as
It is further defined at as
Here, is a discrete random variable with possible outcomes in the set and corresponding probabilities for . The resulting unit of information is determined by the base of the logarithm, e.g. shannon for base 2, or nat for base e.
If the probabilities are for all , then all the Rényi entropies of the distribution are equal: .
In general, for all discrete random variables , is a non-increasing function in .
Applications often exploit the following relation between the Rényi entropy and the p-norm of the vector of probabilities:
Here, the discrete probability distribution is interpreted as a vector in with and .
The Rényi entropy for any is Schur concave.
As approaches zero, the Rényi entropy increasingly weighs all events with nonzero probability more equally, regardless of their probabilities. In the limit for , the Rényi entropy is just the logarithm of the size of the support of X. The limit for is the Shannon entropy. As approaches infinity, the Rényi entropy is increasingly determined by the events of highest probability.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways.
In mathematical statistics, the Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as . The conditional entropy of given is defined as where and denote the support sets of and . Note: Here, the convention is that the expression should be treated as being equal to zero. This is because .
Explores the CHSH operator, self-testing, eigenstates, and quantifying randomness in quantum systems.
Introduces the basics of data science, covering decision trees, machine learning advancements, and deep reinforcement learning.
Covers demousing, estimation, Bayesian inference, likelihood, AWGN, and more.
We introduce Tree-AMP, standing for Tree Approximate Message Passing, a python package for compositional inference in high-dimensional tree-structured models. The package provides a unifying framework to study several approximate message passing algorithms ...
2023
, , ,
Quantum random number generators (QRNGs) are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in or ...
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...